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Abstract. Ice velocity variations near the terminus of Jakob-
shavn Isbra, Greenland, were observed with a terrestrial
radar interferometer (TRI) during three summer campaigns
in 2012, 2015, and 2016. We estimate a ~ 1 km wide float-
ing zone near the calving front in early summer of 2015 and
2016, where ice moves in phase with ocean tides. Digital
elevation models (DEMs) generated by the TRI show that
the glacier front here was much thinner (within 1 km of the
glacier front, average ice surface is ~ 100 and ~ 110 m above
local sea level in 2015 and 2016, respectively) than ice up-
stream (average ice surface is > 150 m above local sea level
at 2-3km to the glacier front in 2015 and 2016). However,
in late summer 2012, there is no evidence of a floating ice
tongue in the TRI observations. Average ice surface eleva-
tion near the glacier front was also higher, ~ 125 m above
local sea level within 1 km of the glacier front. We hypoth-
esize that during Jakobshavn Isbra’s recent calving seasons
the ice front advances ~ 3 km from winter to spring, form-
ing a > 1 km long floating ice tongue. During the subsequent
calving season in mid- and late summer, the glacier retreats
by losing its floating portion through a sequence of calving
events. By late summer, the entire glacier is likely grounded.
In addition to ice velocity variation driven by tides, we also
observed a velocity variation in the mélange and floating ice
front that is non-parallel to long-term ice flow motion. This
cross-flow-line signal is in phase with the first time derivative
of tidal height and is likely associated with tidal currents or
bed topography.

1 Introduction

Greenland’s largest marine-terminating glacier, Jakobshavn
Isbree, has doubled in speed and retreated tens of kilome-
ters in the last few decades (Joughin et al., 2004, 2008; Rig-
not and Kanagaratnam, 2006; Howat et al., 2011). This pro-
cess has been attributed to several processes, including in-
creased subsurface melting and iceberg calving triggered by
relatively warm ocean water (Holland et al., 2008; Motyka et
al., 2011; Enderlin and Howat, 2013; Myers and Ribergaard,
2013; Truffer and Motyka, 2016). In recent years, the glacier
has maintained a relatively stable terminus position despite
continued speedup, primarily due to the fact that the glacier is
now embedded in the ice sheet, with large inflows of ice from
the sides supplying ice to the main glacier channel, albeit
with some thinning (Joughin et al., 2008). However, it is not
clear if this configuration is stable, as Jakobshavn Isbra has
aretrograde bed (Clarke and Echelmeyer, 1996; Gogineni et
al., 2014). Some numerical models suggest that glaciers with
reverse bed slopes cannot maintain stable grounding lines, as
bed topography favors ingress of warm fjord bottom water,
accelerating melting at the ice—ocean interface (e.g., Vieli et
al., 2001; Schoof, 2007).

In addition to the dramatic secular speedup and retreat,
there are strong seasonal variations in both ice speed and
front position at Jakobshavn Isbre. These have an inverse
correlation: ice accelerates through spring and summer but
slows down in winter, while glacier front position retreats
from spring to summer, reaching a minimum in late sum-
mer when ice speed is maximum (Joughin et al., 2008).
This supports the hypothesis that loss of the buttressing ice
tongue during the calving season contributes to Jakobshavn
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Isbra’s seasonal speedup. The rapid acceleration since 2000
may thus be the sequential result of losing its large floating
ice tongue from 1998 to 2003 (Joughin et al., 2004, 2008),
though Van Der Veen et al. (2011) suggested that progressive
weakening of ice in the lateral shear margins is a more plau-
sible explanation for the acceleration. By investigating inter-
actions between the glacier and its pro-glacial ice mélange,
Amundson et al. (2010) interpreted the seasonal advance
and retreat of the glacier terminus as an effect of seasonally
variable rheology in the ice mélange: stiffened mélange in
winter suppresses major calving events, enabling the termi-
nus to move forward; while in summer, a weaker mélange
can no longer prevent major iceberg calving, and the termi-
nus retreats. They used a force balance analysis to demon-
strate that large-scale (full-glacier-thickness icebergs) calv-
ing events are not likely to occur when the ice front is well
grounded. Based on this, they suggested that one of the nec-
essary conditions for frequent full-glacier-thickness iceberg
calving at Jakobshavn Isbre is a floating or close-to-floating
terminus in summer.

Currently, it is challenging to observe grounding line po-
sition directly when it lies near the calving front. However,
this can be inferred from observations of ice motion (Hein-
ert and Riedel, 2007; Rignot et al., 2011; Rosenau et al.,
2013). For many marine-terminating glaciers, ice speed is af-
fected by ocean tides (e.g., Makinson et al., 2012; Podrasky
et al., 2014; Voytenko et al., 2015a). At Jakobshavn Isbre,
Podrasky et al. (2014) used GPS and theodolite data obtained
in a 2-week campaign in middle to late August 2009 to study
velocity response to ocean tidal forcing near the terminus of
Jakobshavn Isbra. After removal of a high background speed
and perturbations caused by a single calving event, tidal forc-
ing explained a significant fraction of the remaining signal.
Based on the fast decay of tidal response upstream, they con-
cluded that the terminus region is very nearly grounded dur-
ing summer months. Rosenau et al. (2013) used photogram-
metric time-lapse imagery to estimate groundling line migra-
tion and calving dynamics at Jakobshavn Isbra. They found
that the groundling line retreated 3.5 km from 2004 to 2010,
with an ephemeral floating tongue during the advance sea-
son.

In this study, we use ice velocity and elevation time series
observed with terrestrial radar interferometry (TRI) to ana-
lyze groundling line position and tidally affected ice flow.
Previous work (Peters et al., 2015; Voytenko et al., 2015a,
b, ¢, 2017; Holland et al., 2016; Xie et al., 2016) has shown
that TRI can overcome the limitations of GPS (low spatial
resolution, difficult to deploy near the calving front), theodo-
lite (low spatial resolution and precision), photogrammetry
(low reliability in bad weather and at night), and satellite ob-
servations (low temporal resolution). Here we use TRI mea-
surements obtained in three summer campaigns, but at differ-
ent stages (early versus late summer) of the calving season,
to investigate tidal response and the evolving glacier front
through Jakobshavn Isbra’s calving season.
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Table 1. TRI observation parameters.

Start End Scanned Repeat
Year day day arc (°) time* (min)
2012 31July 12 August 120 3
2015 6June 10 June 150 1.5
2016  7June 20 June 170 2

* Time between two adjacent scans.

2 Data acquisition

We observed the terminus of Jakobshavn Isbrz in three sum-
mer campaigns in 2012, 2015, and 2016. Each campaign ob-
tained a continuous record of velocity and elevation change
over 4 to 13 days. The TRI instrument (GAMMA Portable
Radar Interferometer) is a real-aperture radar operating at
Ku-band (1.74 cm wavelength) and is sensitive to line-of-
sight (LOS) displacements of ~ 1 mm (Werner et al., 2008).
It has one transmitting and two receiving antennas, which
allows for high spatial and temporal resolution measure-
ments of both displacement and topography. The antennas
are rigidly attached to a rack structure, which sits on a mo-
tor that rotates around a fixed vertical axis. In 2012, the in-
strument was deployed on a tripod reinforced with sandbags,
with the calving front ~ 3-6 km away. In 2015 and 2016, the
instrument was mounted on a metal pedestal connected to
bedrock with 10 cm bolts and protected by a radome to elim-
inate disturbance from wind and rain, with the calving front
~2-5km away. In all three campaigns, the radar scanned
to a maximum distance of 16.9 km, generating images with
both phase and intensity information. The resolution of the
range measurement is ~ 1 m. The azimuth resolution varies
linearly with distance and varies as the arc length [ = D - A,
where D is the distance to the radar and A is the azimuth an-
gle step in radians, ultimately related to radar wavelength and
antenna size. In all three campaigns, the azimuth angle steps
were 0.2°, resulting in an azimuth resolution of 7 m at 2km
distance, 14 m at 4 km, etc. Other parameters in these mea-
surements are listed in Table 1. Figure 1 shows the spatial
coverage of measurements in each campaign.

3 Data analysis
3.1 TRI data processing

TRI data were processed following Voytenko et al. (2015b):
(1) slant range complex images were multi-looked to reduce
noise; (2) interferograms were generated between adjacent
scans; and (3) a stationary point on rock was chosen as a ref-
erence for phase unwrapping. Unwrapped phases were then
converted to LOS velocities. We define LOS velocity as posi-
tive when ice moves towards the radar and negative when ice
moves away from the radar. All results were resampled into
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Figure 1. TRI scan areas in 2012 (blue), 2015 (green), and 2016 (yellow). An intensity image of radar backscatter from the 2015 campaign
(acquired 9 June 2015) is overlain on a Landsat-8 image (acquired 4 June 2015). Dashed lines indicate glacier front locations derived from
satellite images: Landsat-7 on 6 August for 2012; Landsat-8 on 4 June for 2015; and Landsat-8 on 13 June for 2016. Triangles in salmon
color show locations of the radar. Dashed red box in the insert outlines the area shown in the main figure. Cyan lines in the insert show
the calving front positions in different years, courtesy of NASA Earth Observatory (https://earthobservatory.nasa.gov/Features/Greenland/
greenland3.php). Red hexagon in the insert marks the mooring location where tidal height was recorded in 2015. Red star in the insert shows
the location of the study area in Greenland. Coordinates are in polar stereographic projection, corresponding to EPSG:3413.

10m x 10m pixel spacing maps unless otherwise specified,
with a bicubic spline interpolation algorithm. To georefer-
ence the TRI results, we used a Landsat-7/8 image acquired
during (if not possible, then with a < 2-day time difference)
the observation period as a reference. By fixing the radar lo-
cation and horizontally rotating the intensity image, a rota-
tion angle was estimated based on the best match of distinct
surface features (e.g., coast line, ice cliff, icebergs); thus TRI-
derived results were georeferenced into the earth reference
system. In this study, we use the polar stereographic projec-
tion to minimize distortion. Notice that the TRI instrument
measures LOS intensity and phase information. Converting
LOS data into x—y grid coordinates induces some distor-
tions due to topography, especially in the mélange close to
the radar, where the height differences are largest. The radar
location in 2012 was ~ 280 m above local sea level, and in
2015/2016 ~ 200 m above local sea level. A simple calcula-
tion based on geometry shows that distortion due to topog-
raphy is < 15m. There are two other error sources in geo-
referencing TRI data: (1) radar position error (it was mea-
sured with a single-frequency GPS, with location error esti-
mated at less than 10 m) and (2) rotation error in matching
TRI and Landsat images. By comparing georeferenced TRI
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images with different Landsat-7/8 images, we found no vis-
ible mismatch larger than four pixel widths of the satellite
images. We thus assess that the coordinate error in georef-
erenced TRI results is < 60 m, i.e., smaller than four pixels
(typically <2 pixels) of Landsat-7/8 panchromatic images.
Moreover, because the radar was deployed on a fixed point in
each campaign, and we used the same radar coordinates and
rotation angle in georeferencing for each campaign, the error
due to georeferencing will not affect our time series analy-
sis. Other errors in TRI data, such as phase variations associ-
ated with variable atmospheric water vapor between adjacent
scans, are difficult to model but should not be significant in
the near field given the 1.5-3 min repeat time. To minimize
water vapor effects, we only analyzed data within 10km of
the radar unless otherwise specified.

TRI data obtained in 2015 have been previously discussed
in Xie et al. (2016). The same data are used here, but we
added 17 h of additional data obtained before the period ana-
lyzed by Xie et al. (2016). The additional data were acquired
when the instrument was in an experimental mode: rather
than 150° of scan, the scanned arc was sometimes set to dif-
ferent values, and the repeat time was sometimes 1 or 2 min
rather than 1.5 min. Otherwise, the additional data have the
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same quality as subsequent acquisitions. We processed the
additional data with the same standards and converted them
into the same reference frame as the remaining 2015 data.

Except for several rapid changes in velocity caused by
calving events, the processed results from 2015 and 2016
have good continuity. However, velocities from 2012 have
some significant offsets (Fig. Sla in the Supplement). Most
of these offsets reflect phase unwrapping errors, reflecting
incorrect integer multiples of microwave cycles applied dur-
ing the phase unwrapping process. The repeat time in 2012
(3 min) was longer than the other two years, and ice motion
relative to adjacent areas in the radar LOS during that inter-
val could exceed one radar wavelength. We fixed these phase
offsets in three steps: (1) estimate the velocity time series
at a single point on the ice (with integer multiples of mi-
crowave cycles corrected); (2) use this kinematic point as the
reference point for phase unwrapping to get relative veloc-
ities for all other mapped points; and (3) add the velocity
model from step 1 to the relative velocities. We compared
this new velocity map with velocities estimated by feature
tracking (done with Open Source Computer Vision Library:
https://opencv.org/; uncertainty is typically <1md~' for a
pair of images separated by 1 day), which is independent of
interferometry and does not require phase connection. The
phase jumps are greatly reduced, and we believe the resulting
velocity time series are an accurate indicator of ice motion.
Details are given in Sect. S1 and Figs. S1-S5.

3.2 Tidally driven ice motion analysis

The glacier directly interacts with the ocean at the calv-
ing front. By changing back pressure on this front, ocean
tides are known to influence the behavior of some marine-
terminating glaciers (Walters, 1989; Anandakrishnan and Al-
ley, 1997; Podrasky et al., 2014). Besides back pressure, a
full-Stokes nonlinear viscoelastic model (Rosier and Gud-
mundsson, 2016) suggests that, when there is a floating ice
tongue, tidal flexural stress can also be an important forc-
ing for marine-terminating glaciers. In addition, tidal varia-
tion can influence basal friction at the ice—bed interface, thus
changing the sliding rate of the glacier (e.g., Walker et al.,
2013; Voytenko et al., 2015a).

For all three campaigns, velocities near the terminus show
significant semi-diurnal variation and perhaps a small diurnal
signal. Figure 2 shows the power spectral density (PSD) anal-
ysis for selected data in 2016. PSDs for 2012 and 2015 are
shown in Sect. S2, Figs. S6 and S7. Previous studies indicate
that, apart from calving events, short-term ice velocity vari-
ations at Jakobshavn Isbrae are well described with simple
tidal response models (e.g., Rosenau et al., 2013; Podrasky
et al., 2014). Diurnal variation caused by surface melting
may also contribute to velocity variation. This has been ob-
served at both Jakobshavn Isbre (Podrasky et al., 2012) and
Helheim Glacier (Davis et al., 2014). Due to the short time
span of our data, it is not possible to recover the full temporal

The Cryosphere, 12, 1387-1400, 2018

S. Xie et al.: Grounding line migration observed with TRI

spectrum of ice velocity variations. Instead, we focus on the
largest spectral components of the velocity field.

There was no tide record in the fjord near the terminus
during our campaigns. Podrasky et al. (2014) analyzed a
14-day tide record in the fjord within Skm of the calving
front obtained in August 2009 and compared it with a longer
record from Ilulissat. The two datasets show close agree-
ment, with no measurable delay in time, and a maximum dif-
ference in stage < 10 cm. Thus they used the longer record of
tides at Ilulissat to analyze the tidal response of the glacier.
We also used analyzed tidal constituents from the long-term
record at [lulissat to predict tides in the fjord during our cam-
paigns. Richter et al. (2011) applied harmonic tidal analysis
to 5 years of long-term sea-level records at Ilulissat and es-
timated that the largest three tidal constituents are K1, M2,
and S2, with amplitudes of 0.331, 0.671, and 0.273 m, re-
spectively. These three constituents account for > 95 % of
all the analyzed tidal constituents. Figure S8 shows the pre-
dicted tide and tidal rate (defined as the first time derivative
of tidal height) during the 2015 campaign, when we had a
mooring deployed at the mouth of the fjord (red hexagon in
Fig. 1) that recorded tidal height. There are only small dif-
ferences between measured tide or tidal rate with predictions
using the three largest constituents. In the following analysis,
we focused on ice velocities with the same frequencies as the
K1, M2, and S2 tide constituents. Other components of tidal
motion with similar frequencies will be aligned into these
three constituents. For example, diurnal variation caused by
surface melting with a period of ~ 1 d, if it exists, will not be
separable from K1 with a period of 1.0027 d.

Many tidal response models analyze the response of ice
position to tidal height variation (e.g., Davis et al., 2014;
Podrasky et al., 2014). However, our TRI measurements are
only sensitive to LOS displacement. The corresponding ve-
locity derived by interferometry is the first time derivative
of LOS displacement. Velocity can be converted to position
by integration; however, due to data gaps and the nonlinear
behavior of the velocity time series, integration of velocity
time series may introduce artifacts. Therefore, we used ice
velocity instead of position and analyzed the response of ice
velocity to tidal rate. The amplitude of variation is magni-
fied by frequency (signals with higher frequencies will have
larger ranges of first time derivative; see Sect. S3), but the
phase difference is unchanged by differentiation.

Before the tidal response analysis, we used the modi-
fied Z-score method (Iglewicz and Hoaglin, 1993; also see
Sect. S1) to remove outliers. We note that TRI-observed ice
motion in the mélange is very sensitive to small calving
events, while ice on the glacier is less affected. Due to fre-
quent calving events in the 2012 data, we were not able to
accurately model the full time series. Instead, we used data
obtained from 6 to 10 August when there was only one small
calving event (see Fig. S1) for the following analysis. For the
2015 data, there were many small calving events and a large
one at the end (Xie et al., 2016), resulting in a noisy time se-
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Figure 2. Stacked power spectral density (PSD) estimates of the LOS velocity time series for selected areas in 2016. Three 0.5 km x 0.5 km
boxes (a, b, and ¢) mark the selected areas. PSD plots are normalized, and each black line represents 1 pixel (10 m x 10 m) in the correspond-
ing box. Red line shows mean value. Blue lines mark frequencies of K1, M2, and S2 tide constituents. On map to the left, dashed orange line
shows a significant step change of height in the mélange observed in 2016 (see also Fig. 3a).

ries for the mélange. We therefore omitted the 2015 mélange
from further analysis. For 2016, a step change in ice eleva-
tion (dashed orange line in Fig. 2) was observed, separating
the mélange into two distinct parts. Downstream from the
step change, ice motion is very noisy and difficult to analyze
for periodic signals. Upstream from that, ice velocity varia-
tion is similar to the glacier. Therefore, we did not do tidal
response analysis for the ice mélange downstream from the
step change in 2016. Movies S1, S2, and S3 show all major
calving or calving-like (collapse of tightly packed mélange)
events observed during the three campaigns, and correspond-
ing changes in the mélange.

For both 2012 and 2015 campaigns, ~ 4 days of data were
analyzed, and a second-order polynomial was used to detrend
the time series. For the 2016 campaign, ~ 13 days of data
were analyzed. This time series shows significant responses
to a few calving-like collapse events (Fig. 3). We used a func-
tion composed of a second-order polynomial +3 pairs of
sines and cosines to estimate the response to calving(-like)
events and then removed the polynomial. The function is

3
Vi=aj+bjt+cjt} + D [disin@n fiti)
k=1

+ ex cos(2m fiti)], (1
where V; is the observed LOS velocity at time #;, and a;, b,

and c; are coefficients of second-order polynomial for the jth
period, where periods are separated by large calving(-like)
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events. To better estimate the second-order polynomial, peri-
ods with data spanning shorter than 1 day are not used. dj and
ey are coefficients of the kth periodic component, with fre-
quency f; among those of K1, M2, and S2 tidal constituents.
Response to calving events and tidal constituents with peri-
ods > 2 days is largely eliminated with this procedure. Fig-
ure 3 gives an example of the observed and detrended time
series. Note that data in 2016 span longer times than 2012
and 2015. To save computational time, we converted TRI im-
ages into pixel sizes of 30 m x 30 m for a map-wide analysis.

Detrended time series were passed through a median fil-
ter to reduce noise. The kernel size is 3, 5, and 5 for data in
2012, 2015, and 2016, equal to a 9, 7.5, and 10 min time win-
dow, respectively. All time series were then analyzed using
the method of Davis et al. (2014), which estimates the ampli-
tudes and phases of the three periodic components with the
same frequencies as the K1, M2, and S2 tidal constituents.
This method allows us to distinguish components with close
frequencies (in our case, M2 and S2). We also used a least
squares fit to an equation with three frequencies of sines and
cosines as an alternative method. The two methods fit the
time series equally well, with differences that are insignifi-
cant compared to noise. Note that we assume constant tidal
response for each campaign, whereas in reality tidal response
can have temporal variation due to calving and other pro-
cesses. However, previous work at Jakobshavn Isbre (Po-
drasky et al., 2014) and Helheim Glacier (de Juan et al.,

The Cryosphere, 12, 1387-1400, 2018
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Figure 3. (a) Ice velocity estimated by feature tracking using a pair of TRI intensity images separated by 1 day in the 2016 campaign.
Dashed white line outlines the area with (nearly) stationary points used to define uncertainty of velocity estimate; the rms of velocity
estimates (without detrending) by feature tracking within the dashed outline is < 1 md~L. (b) TRI-observed LOS velocity time series for
a single point, marked by white dot in (a). Grey dots show velocities derived from unwrapped phases, red curve shows the model used
to remove perturbations caused by calving events, and black dots show detrended time series offset by —8 md~!. Blue arrows mark large
calving or calving-like collapse events. Orange line shows changes of angle between LOS and 2-D ice velocity direction by feature tracking.
The LOS velocity variation for a period longer than 1 d is mostly due to changes in background velocity direction.

2010) shows that this variation will not significantly change
the phase of tidal response during a period of few weeks.
Figure 4b, d, and f show maps of phase lag (converted to
time in hours) from tidal rate to TRI-observed LOS velocity
at the M2 tidal frequency, along with a velocity profile for
each campaign. Note that, due to the phase character of peri-
odic signals, dark red on the map represents phase values that
are close to dark blue. For example, 12.42h (period of M2)
“equals” 0. Note also that the phase lag maps only show pix-
els with signal-to-noise ratio (SNR) > 1.5, where we define

The Cryosphere, 12, 1387-1400, 2018

SNR as
2
o4
SNR = . )
o8

noise

‘We use the root mean square (rms) of the detrended velocity
time series to represent ojgnal, and rms of the residuals to
represent onoise. We use the M2 tidal signal to illustrate tidal
responses since this is the largest tidal constituent. Phase lag
maps for K1 and S2 are shown in Fig. S9, with patterns that
are similar to M2.
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Figure 4. Phase lag map and velocity time series for a profile in each campaign. Grey dots (a, ¢, e) show detrended LOS velocity time series
for a profile along the ice flow line, marked by white dots on the map to the right. Red curve shows best model fit. LOS velocities are offset
for clarity. Cyan curve shows tidal rate. Phase lag map (b, d, f) shows M2 frequency signal. Areas where SNR < 1.5 are omitted. Phase lags
are converted to times (in hours). In (f), dashed red line shows TRI-derived location of glacier front on 13 June 2016. B1, F1, and F2 mark
selected points showing velocity time series in Fig. 6. Note that the amplitude of detrended LOS velocity depends on a number of factors,
including tidal response, ice flow direction relative to radar LOS, distance up-glacier, whether the scanned area is glacier or mélange, and
(within the mélange) whether the imaged pixel is close to or far from the calving front.
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Figure 5. Annual maximum and minimum extents of Jakobshavn
Isbrae’s calving front from 2012 to 2016. Solid lines show the glacier
front when glacier extent is maximum, and dashed lines when
glacier extent is minimum. Glacier front locations are derived from
available Landsat-7/8 and Sentinel-2 images in USGS archive. Leg-
ends are dates of image acquisition. Lines with triangles, stars, and
circles show glacier front locations during TRI campaigns in 2012
(6 August), 2015 (9 June), and 2016 (13 June), respectively. Back-
ground for this figure is a Landsat-8 image acquired on 4 June 2015.

Figure 4 shows two types of phase lag patterns. For 2012,
LOS velocity of ice in the mélange has ~ 0 phase lag to tidal
rate, whereas the phase lag increases sharply at the calving
face, to ~ 8.5 h on the glacier front. For both 2015 and 2016,
there is a narrow zone at the glacier front that is in phase with
the tidal rate, with phase lag close to 0. Upstream from that,
phase lag increases to ~ 8 h.

4 Discussion
4.1 Grounding line variation in a calving season

One hypothesis concerning the annual cycle of advance and
retreat of Jakobshavn Isbrz is that a floating tongue grows in
winter and disappears in late summer (Joughin et al., 2008;
Amundson et al., 2010). However, there are no direct obser-
vations through a full calving season. We addressed this by
assuming consistent behavior over the 5-year observation pe-
riod and considering our data to be a representative sample of
early and late melt season behavior. This assumption is based
on the relatively regular seasonal variations in calving front
positions over the observation period from satellite images
(Fig. 5) and the good inverse correlation between seasonally
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varying speed and length of ice tongue (Joughin et al., 2008,
2014).

Rosenau et al. (2013) looked at the cross-correlation co-
efficient between tidal height and the vertical component of
ice trajectory to estimate grounding line migration. This ap-
proach assumes that the only force that drives vertical ice
motion is tide rise and fall. From an analysis of optical im-
ages, they found no evidence of floatation in mid-July 2007
(~ 6-day duration), a ~ 500 m wide floating zone from 8§ to
9 August 2004 (~ 1-day duration), and an even wider float-
ing zone from late spring to early summer 2010 (~29-day
duration). Podrasky et al. (2014) applied a tidal admittance
model to analyze both horizontal and vertical responses to
tidal forcing at Jakobshavn Isbre. They found rapid decay
of admittance at the glacier front, corresponding to small
(~2 and ~ 0.7 km for horizontal and vertical, respectively)
e-folding lengths (the distance over which the amplitude de-
creases by a factor of e), concluding that the glacier front was
very nearly grounded in late August 2009.

TRI-derived LOS velocities reflect several forcings. Sur-
face meltwater-induced velocity variation is a quasi-diurnal
signal. Podrasky et al. (2012) detected an amplitude of up
to 0.1 md~! diurnal signal 20-50 km upstream from the ter-
minus of Jakobshavn Isbre. The timing of the diurnal max-
ima was ~ 6 h after local noon, consistent with surface melt-
ing. Within 4 km of the glacier front, Podrasky et al. (2014)
found diurnal variations that are 0.5-1 times the amplitude
of tidally forced variations, with a maxima 10.9-11.7 h after
local noon. At Helheim Glacier, Davis et al. (2014) identi-
fied a signal with peak-to-peak variation of ~0.7md~! in
glacier flow speed at a site close to the terminus, likely as-
sociated with changes in bed lubrication due to surface melt-
ing. While surface meltwater can cause a diurnal component
in ice velocity, it should have no direct influence on semi-
diurnal signals, which are the dominant signals observed in
all three of our campaigns. Supraglacial lake drainage events
could be another possible forcing process, though they were
not observed near the terminus during our campaigns. Up-
stream from the terminus, supraglacial lake drainage events
occur but are sporadic. Podrasky et al. (2012) observed at
most three supraglacial lake drainage events near the termi-
nus during three summers from 2006 to 2008. If such events
occurred during our data collection periods, the responses are
likely to have been eliminated by the detrending process.

The LOS velocity variation contains two components of
ice motion: (1) vertical motion and (2) horizontal motion.
For all three campaigns, the radar was always located higher
than the ice surface in the mélange and the first ~ 3 km of the
glacier. In this case, the TRI-observed LOS velocity compo-
nent 1s

1 dh
Vios = ————, 3)

2 dr
L
(w5) +1
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where L is the horizontal distance between the radar and tar-
get, Hy is the mean height different between the radar and
target, h is the vertical movement relative to Hp, and %
is the vertical component of ice velocity (see geometry in

Fig. S10). We assume that, for floating ice, % is correlated
dh

with the tidal rate. Hence 3 ~ tidal rate in the mélange, and
less than that for the glacier, but it can be close if ice near
the glacier front is very weak, similar to what Voytenko et
al. (2015a) found at the terminus of Helheim Glacier. For
grounded ice, % variation should have a much smaller am-
plitude than tidal rate variation. Horizontally, for all three
campaigns, ice on almost the entire glacier moves towards
the radar (LOS velocity is positive; see Figs. S3, S4, and
S5). Previous studies suggest that several mechanisms are
acting simultaneously, and there is no single defined phase
relation between tide variation and ice speed (e.g., Thomas,
2007; Adalgeirsdéttir et al., 2008; Davis et al., 2014; Po-
drasky et al., 2014). However, at the terminus of Jakobshavn
Isbre, Podrasky et al. (2014) found that glacier speed and
tidal height are anti-correlated. This likely reflects variation
of back-pressure forcing associated with tide rise and fall.
We have not attempted to derive a comprehensive model
for ice velocity variation caused by changes of back pressure
or other factors. Instead, we adopt the admittance parameters
estimated by Podrasky et al. (2014) to assess a near-upper
bound of along-flow-line velocity variation. Using theodo-
lite and GPS observations near the ice front, Podrasky et
al. (2014) estimated horizontal and vertical tidal admittances
of <0.12 and < 0.15, respectively. In terms of phase, tide-
induced vertical motion is in phase with the ocean tide, while
horizontal velocity is anti-correlated with tidal height; i.e.,
horizontal velocity maxima are concurrent with the inflec-
tion points of tidal rate. By assuming the glacier was un-
der the same conditions as the time when Podrasky et al.
(2014) did their measurements, we predict ice velocities near
the glacier front. In Fig. 6a, F1 and F2 correspond to the
two points marked with purple triangles in Fig. 4f. For each
point, two components of ice velocity were predicted and
projected onto the LOS direction to the radar: (1) vertical ve-
locity by using tidal admittance of 0.15, and time lag of O to
tidal rate, shown by solid black curve, and (2) horizontal ve-
locity by using tidal admittance of 0.12, and anti-correlated
with tidal height, shown by the dashed black curve. The red
curve shows the sum of these two components. Podrasky
et al. (2014) inferred that the glacier front was very nearly
grounded during their observation period, and both horizon-
tal and vertical tidal admittances dropped dramatically up-
stream. While we use the upper bound of the tidal admittance
by Podrasky et al. (2014), the amplitudes of our predicted ve-
locities are almost the maxima for grounded ice. However, as
shown in Fig. 6a, predicted tide-induced vertical velocities
have far smaller magnitude than our TRI-derived velocities
— the horizontal component is larger but is negatively cor-
related with TRI observations. Therefore, we reject the hy-
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Figure 6. (a) Detrended LOS velocities of points located in the low-
phase-lag zone in 2016. F1 and F2 are the two points marked with
purple triangles in Fig. 4f; F2 (upstream one) has been offset by
3.5md ! for clarity. Grey dots are observed time series. Solid black
curve shows vertical response to tide variations, using admittance
of 0.15 (Podrasky et al., 2014) projected onto the LOS direction.
Dashed black curve is horizontal response by using admittance of
0.12, projected onto the LOS direction. Red curve shows the sum
of solid and dashed black curves; its Pearson correlation coefficient
with observed time series is —0.13 and —0.19 for F1 and F2, re-
spectively. Blue curve shows predicted LOS velocity by assuming
ice is free-floating; its Pearson correlation coefficient with observed
time series is 0.82 and 0.69 for F1 and F2, respectively. Note that
~ 4 days of data are used in this figure for clarity. (b) LOS veloc-
ities of a point immediately adjacent to the glacier front in 2012
(B1 in Fig. 4b); colors and curves represent the same parameters as
in (a). The Pearson correlation coefficient with observed time series
is 0.65 for the red curve (grounded or nearly grounded assumption,
the same as Podrasky et al., 2014) and —0.56 for the blue curve
(free-floating assumption).

pothesis that ice near the glacier front in early summer 2016
was nearly grounded as during the observation period of Po-
drasky et al. (2014) in late summer. For comparison, we also
plot predicted LOS velocities by assuming ice was in a free-
flotation state, shown in blue. This is in phase with the TRI
derived velocities, although the magnitude does not fully ex-
plain the larger signals observed by TRI. Possible reasons are
discussed below.

Ice located in the low-phase-lag zone (dark red or blue in
Fig. 4d) in 2015 yields similar results. For ice further up-
stream in 2015 and 2016, and almost the entire glacier front
of 2012, we cannot reject the possibility of a near-grounded
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basal condition, because the admittances by Podrasky et al.
(2014) can then produce LOS velocities that are sufficiently
large and correlated with TRI observations. Figure 6b shows
predicted (red curve) and observed (grey dots) velocity of a
surface point (B1 in Fig. 4b) that is immediately adjacent to
the glacier front during our 2012 campaign. They have simi-
lar amplitude and phase, though the maxima of TRI-observed
velocity are not exactly concurrent with the inflection points
of tidal rate. Instead, they are slightly earlier (~ 0.5h) than
the inflection points. We presume that ice in the high-phase-
lag zone in Fig. 4 is either grounded or nearly grounded.

Based on this analysis, we hypothesize that during early
summer 2015 and 2016 there was a narrow zone of float-
ing ice near the glacier front, which is at least the width of
the low-phase-lag zone (~ 1km). However, we are unable
to determine if ice more than 1 km from the glacier front is
grounded or not. The annual maximum and minimum extents
of the ice front (solid/dashed lines in Fig. 5) support this hy-
pothesis: the low-phase-lag zone on the glacier during both
the 2015 and 2016 observations coincides with the transition
zone between maximum and minimum glacier front. In con-
trast, for the 2012 data, the glacier front was close to the an-
nual minimum. Additional evidence to support this hypothe-
sis comes from the ice surface elevation map. Figure 7 shows
the median average DEM from estimates of a 1-day TRI
measurements for each campaign. In 2012, near the center-
line of the main trunk, surface ice elevation increases dramat-
ically near the glacier front, to > 120m in < 1 km distance
from the glacier front. In contrast, in 2015 and 2016, ice el-
evation increases more slowly, with a ~ 1 km wide zone that
is < 110m higher than local sea level. In this low-elevation
zone, overall buoyancy could make conditions favorable for
a floating glacier front during early summer (2015 and 2016
data).

During the time span of our TRI campaigns, the glacier
front maintained a relatively constant position, with ~ 3 km
ice advance and retreat per year. Time series of satellite im-
ages also suggest that in late summer to early autumn the
glacier front usually stabilizes near the minimum position for
a few weeks before a steady advance. Using the TRI cam-
paign in 2012 as a proxy for late-summer conditions, and
campaigns in 2015 and 2016 as proxies for early-summer
conditions, we infer that from 2012 to 2016 Jakobshavn Is-
brea had a floating tongue in the early stage of the calving sea-
son. Undercutting and tidal flexure then weakened the float-
ing ice, leading to large calving events in subsequent months.
During the calving season, calved ice surpassed ice flow into
the terminus zone, causing the glacier front to retreat. In late
stages of the calving season, the glacier had lost the majority
of its floating tongue, and the ice front became grounded or
nearly grounded.
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4.2 Other sources of forcing

Figure 6a shows that, even when assuming ice is free-floating
near the glacier front, LOS velocity variation generated by
tide rise and fall is insufficient to explain the observed veloc-
ity time series. Ice velocity variation caused by surface melt-
ing, if in phase with tidal rate, can increase the overall ve-
locity variation. In this study, we did not separate the quasi-
diurnal signal associated with surface melting from similar
tidal components. However, there is some evidence of such
a signal. As shown in the normalized PSD in Fig. 2c, the
diurnal constituent is less obvious than in Fig. 2a and b: as-
suming speed maxima caused by surface melting lags local
noon by 6h, it will be in phase with the K1 ocean tide rate.
Due to the geometry difference, TRI-observed LOS diurnal
tidal signal will be superimposed on a negative (box C) or
positive (box A and B) diurnal signal associated with surface
melting, decreasing or enhancing the observed signal. Thus
the diurnal constituent in Fig. 2c is smaller than the other
two areas. However, surface melting should not make a sig-
nificant contribution to semi-diurnal signals, as it is a diurnal
phenomena. In addition, most sources of forcing would in-
duce longitudinal velocity variations, and their signals should
attenuate significantly near the glacier front due to the LOS
geometry. The large additional variation shown in Fig. 6a has
a significant component that is not parallel to long-term ice
flow motion, i.e., in the cross-flow-line direction; thus it can-
not be mainly caused by surface melting. We therefore stud-
ied points moving in a near-perpendicular direction to LOS,
where along-flow-line motion (e.g., velocity variation due to
surface melting) is likely to be negligible in the TRI data.
The 2016 data are appropriate for this study.

We focused on three points in the mélange (Fig. 8a).
The velocity estimates from both interferometry and feature
tracking suggest that their along-flow line velocities are al-
most perpendicular to the radar LOS direction (within £5 of
90°). Any longitudinal variation would be trivial when pro-
jected onto the LOS direction. Figure 8b shows that the LOS
velocity variation caused by up-and-down ice motion that is
directly related to tides can only explain about half of the ob-
served signal. The extra signal has a strong correlation with
tidal rate, with an amplitude of ~ 1 md! (~0.1m in dis-
placement). This phase relation suggests that either bed to-
pography or tidal currents are responsible for the signal that
is non-parallel to long-term ice flow motion. Bed topography
is not likely to be the main contributor, as it is more likely
to affect glacier motion rather than mélange motion, unless
mélange ice is strongly attached to the glacier. There is no
ocean current record during our campaigns near the glacier
front, and available models for the ice fjord are too coarse.
However, as Doake et al. (2002) have discussed, the usually
accepted drag coefficient between ice and water is not likely
to create enough force to drive ice motion to a sufficient mag-
nitude. To fully explain the periodic non-parallel signal, we
need to either assume a very rough surface for ice below the
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Figure 7. DEM for the glacier front, derived from median average of DEM estimates separated by 2 min during a 1-day period. For each
subplot, red dot shows location of the radar, and pink contours show bed bathymetry in meters (An et al., 2017). Dashed red line shows the
glacier front from TRI image. Note that in 2016 it was not possible to distinguish a portion of the glacier front from TRI measurements;
hence it is not marked on the map. The background image for (a) was acquired on 6 August 2012 by Landsat-7; white stripes are data gaps.
Background image in (b) was acquired on 4 June 2015 by Landsat-8. Background image in (c¢) was acquired on 13 June 2016 by Landsat-
8. Note that uncertainty increases with distance to the radar. Mean elevation of the black box (1 km x 1km outlines in a-c) immediately
adjacent to the glacier front is 99, 109, and 124 m for 2012, 2015, and 2016, respectively; we use this to represent the mean elevation within
1 km to the glacier front. Mean elevation of the black box upstream (1 km x 1 km outlines in b and ¢, 2-3 km to the glacier front) is 154 and
158 m for 2015 and 2016, respectively. Black, blue, and red line in (d) show elevation profiles along a transect marked (grey lines in a—c).
These transects have the same location in space. In (e), the distance of each transect is normalized so that the glacier fronts are in the same
position.

water, so that ice motion could be driven by tidal current, or
consider other sources of forcing. These forces are also likely
to influence ice on the floating glacier tongue. At a point on
the glacier where ice moves ~90° to radar LOS (Fig. 8c),
the TRI-derived velocity time series has a larger amplitude
than the vertical tidal rate (Fig. 8d). This suggests that the
floating ice near the calving front in 2015 is weak and moves
in a manner similar to the mélange ice.

www.the-cryosphere.net/12/1387/2018/

5 Conclusions

High spatial and temporal resolution measurements of the
time-varying velocity field at the terminus of Jakobshavn
Isbree were acquired with terrestrial radar interferometry.
Ocean tides modulate glacier velocity, and this modulation
can be used to infer the location of grounding line. The phase
relation between ice velocity and tidal rate suggests a ~ 1 km
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Figure 8. (a, b) TRI observed ice motion that is non-parallel to long-term ice flow motion in the mélange of 2016. In (a), color map shows
LOS velocity by interferometry, from a 1-day median average. Arrows show velocity estimates from feature tracking projected onto the LOS
direction (dark red when ice moves towards the radar and dark blue when ice moves away). Dashed grey line shows glacier front location
from TRI image. Black square, blue triangle, and red star mark three points where 2-D velocity direction is nearly perpendicular to radar
LOS. Their LOS velocity time series are shown in (b). Note that the point with blue triangle marker corresponds to the marked point in
Fig. 3a. Top three rows in (b) show TRI-observed LOS velocities for selected points; cyan curves are predicted LOS velocities based on the
imaging geometry, assuming ice is free-floating. LOS velocities are offset for clarity. Bottom row shows residual time series by subtracting
the cyan curves. (¢, d) TRI observed ice motion that is non-parallel to long-term ice flow motion on the glacier front for 2015. Colors and
arrows in (c) represent the same parameters as in (a). A point immediately adjacent to the glacier front was chosen, marked by black square,
with its LOS velocity observed with TRI and predicted by tide variations shown in (d). Cyan curve in (d) shows predicted LOS velocities.

wide floating zone in early summer of 2015 and 2016, where
TRI-observed velocity variation contains ice up-and-down
motion caused by tide rise and fall, and perhaps a compo-
nent that is non-parallel to long-term ice flow motion due to
tidal currents. The floating zone moves together with calved
ice through most of the calving season. However, in late sum-
mer 2012, there is no evidence of a floating ice tongue. We
hypothesize that Jakobshavn Isbre maintains a short floating
tongue from winter to early summer, when ice flow exceeds
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ice loss by calving and the glacier front advances. In sum-
mer, iceberg calving surpasses ice flow, and the glacier front
retreats, becoming nearly grounded by late summer. TRI-
derived digital elevation models support this hypothesis: in
early summer, there is a ~ 1km wide zone with relatively
thin ice (< 110 m) above local sea level; in late summer, ice
thickness near the glacier front increases dramatically and
buoyancy is insufficient to support a floating glacier front.
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