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ABSTRACT ARTICLE HISTORY
Although the atmospheric compensation models developed to Received 2 October 2020
date have been generally robust and effective for InSAR, how to Accepted 11 May 2021
choose the right atmospheric correction method for ground-based

InSAR is worth studying. This paper uses different methods for

atmospheric phase screen (APS) compensation based on studies

of ground-based radar (GBR) to zero-baseline acquisitions over the

Woda landslide in Sichuan, China. This landslide has a steep topo-

graphy, thick fog, turbulent rivers and strong rains. Data were

acquired at the Ku-band using a GAMMA Portable Radar

Interferometer Il (GPRI-II) in multiple campaigns

(4 July 2019-13 July 2019). In 2019, the Miyun open-pit mine was

also studied; the maximum deformation reached 4.03 mm/hour.

The collected data were processed within one unit based on the

small baseline set (SBAS) approach. The experimental results show

the following (1) For long-distance monitoring with complex atmo-

spheric disturbances, range- and/or height-dependent models fail.

(2) The iterative decomposition (ITD) method can effectively

address complex atmospheric disturbances. (3) If the threshold of

wavelength is set to be large, the ITD method becomes a stratified

model.

1. Introduction

Currently, spaceborne synthetic aperture radar (SAR) is generally recognized as a powerful
tool that is able to detect surface deformation and generate a digital elevation model
(DEM) of an observed area by taking advantage of phase changes between SAR acquisi-
tions (Hanssen 2001). However, the revisit period of SAR satellites restricts flexibility for
deformation tasks (Pipia et al. 2012). More recently, ground-based radar (GBR) has been
developed, which shows enhanced capabilities in monitoring the displacements of small
areas such as dams (Wei, Qihuan, and Shunying 2016; Di Pasquale et al. 2018), bridges
(Heng and Jie 2013; Zhang et al. 2018), buildings (Tarchi et al. 2000; Liu et al. 2016), and
landslides (Noferini et al. 2006, 2007a; Herrera et al. 2009; Vincent, Francis, and Rajsingh
2015). Compared with spaceborne SAR, GBR has the advantages of a high stability of the
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sensor platform, fine spatial resolution, no baseline error and more flexible observation
angle, all within a shorter data acquisition time (Huang et al. 2015). GBR is suitable for
monitoring and early warning and emergency observation, while spaceborne SAR tech-
nology is suitable for hidden danger identification and risk investigation. The application
of the two methods in landslides is complementary and suitable for different application
stages.

For this type of data, in addition to thermal noise and the classical sources of decorr-
elation, the atmospheric phase screen (APS) is the most relevant distortion to the inter-
ferometric phase that becomes directly visible in the interferograms. The APS is caused by
the change in the refractive index caused by an uneven distribution of water vapour and
pressure (Pipia et al. 2006; Iglesias et al. 2013; Caduff et al. 2014, 2015) in the process of
radar signal propagation, which results in the change in the radar signal propagation path
and velocity. Due to the appropriate revisit period and short range, GBR should be less
affected by the atmosphere, but in particular environments, it is still affected. Therefore, to
obtain reliable deformation maps, the atmospheric phase delay cannot be ignored
because the short wavelength is sensitive to atmospheric variations in a continuous
GBR campaign (Zebker, Rosen, and Hensley 1997). Other methods use external data,
such as multispectral remote sensing data and meteorological model data (Eff-Darwich
et al. 2012). The former method utilizes the integrated water vapour in the atmosphere
provided by multispectral remote sensing data (Li 2005). The latter method can predict
and simulate atmospheric conditions using analysis data (Jung, Kim, and Park 2013).
Although the interferogram can be corrected using the retrieved water vapours with
the two methods in INSAR processing, APS correction ground-based radar fails because of
different acquisition times between auxiliary data and GBR data. When the APS reaches
magnitudes and spatial extents, allowing it to completely mask the underlying signal, its
stochastic properties also rely on the topography and are consequently non-constant
because the APS associated with a point t is the result of an integration of different
atmospheric effects along the line joining t and the instrument position (Butt, Wieser, and
Conzett 2016). Hence, the APS cannot be second-order stationary, and thus widely known
inference methods such as simple kriging (Cressie 1990) hold no optimality. Based on the
supposed homogeneity of atmospheric parameters (humidity, temperature, and pres-
sure), the millimetre-wave propagation model (MPM) was proposed (Liebe 1985). The
model assumes that atmospheric conditions are weak for the entire monitoring site, with
topographic variations along the range. However, the atmospheric parameters from
a single position cannot be applied to the correction of an image corresponding to
different ranges. Moreover, it is difficult to set up a meteorological instrument around
the monitoring region, and the atmospheric state near the GBR is used to replace the
atmospheric condition on the radar propagation path, which causes large errors.

The proposed method takes atmospheric effects, the range between the GBR and the
monitoring target and the elevation into account. Efforts to correct atmospheric effects
(Luzi et al. 2004) in GBR interferograms have been undertaken via two strategies: (i) range-
and/or height-dependent models (Pipia et al. 2006, 2008; lannini and Guarnieri 2010;
Iglesias et al. 2013) and (ii) ITD (Li et al. 2020). However, there is no clear proposal on how
to select the appropriate atmospheric correction model for different scenarios. This paper
uses a multi-mode microwave interferometric radar system called the GAMMA Portable
Radar Interferometer Il (GPRI-II), which works at the Ku-band in the frequency range of
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17.1 GHz to 17.3 GHz. To verify the applicability of the two different methods, the Woda
landslide and Miyun open-pit mine were studied.

2. Related methods

Currently, there are two main strategies to correct atmospheric effects: (i) range- and/or
height-dependent models and (ii) ITD. Range- and/or height-dependent models have
been widely used and generally considered to be effective. These range- and/or height-
dependent models fail in scenarios where strong dynamic atmospheric turbulence occurs.
The ITD method can correct dynamic atmospheric variations. However, the ITD can reduce
the computational efficiency. This paper mainly compares the applicability of the two
strategies.

2.1. Range- and/or height-dependent models

Range- and/or height-dependent models take into account altitude and distance. The
atmospheric phase is corrected by fitting the relationship among the atmospheric phase,
distance and altitude. To clarify the following models, a schematic of the GBR observation
geometry is displayed in Figure 1.

A simple relationship can be inferred between the atmospheric and interferometric
phase variations:

(Patm(F) t) =K x p(?, t) xr (1)

where p(r,t) = A(t) + B(t)r is a function representing the atmospheric effect (A(t) and
B(t) are coefficients), which depends on the position vector r(r = |r]) and the time t
(Huang et al. 2015); K is an unknown constant. If p(¥, t) expansion is brought into formula
(1), we obtain

Paim = a(t)r + b(t)r? (2)
where a(t)= KA(t) and b(t) = KB(t) are coefficients.
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Figure 1. Schematic of the GBR observation geometry (r and z are both variables).
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In mountainous areas with steep topographic variations, the assumption of spatial
homogeneity might be incorrect due to changes in atmospheric parameters such as
temperature, pressure, and humidity in the spatial domain. Therefore, the impact of
the target area height on the atmospheric phase delay should be considered. The
atmospheric phase delay is modelled as a range- and height-dependent function as

Patm = :BO + Blr + Bzrz (3)

where z represents the elevation, 3, is an offset that can appear in the differential phase
between two different campaigns and 3, and (3, are related to the surface value of the
refractivity index, the inverse of a height scale factor in km-1, the time, etc. This term can
be explained as the contribution of two terms: the first term increases linearly with the
range, and the second term depends on the range r and the height z (Huang et al. 2015).
In the horizontal direction, the APS varies linearly with the range. In the vertical direction,
atmospheric conditions also vary linearly with height.

2.2. Dynamic and static APS: iterative decomposition

Range- and/or height-dependent models have been widely used for APS correction in GBR
interferometry. However, if a strong dynamic APS occurs, the model fails. Thus, Wang et al.
(2019) proposed a new approach for correcting static and dynamic atmospheric variations
together for situations that range- and/or height-dependent models cannot address. The
atmospheric variations are separated into stratified and turbulent components that are
corrected iteratively in this method. In sum, atmospheric phase variations are expressed as:

Patm = Pstatic + Pdynamics (4)

The static APS (¢,4:ic) can be further divided into components: a range-dependent
component (pstatic_range = :BO +B1I’ and a stratified component @gatic_stratifiation — :BZrZ'
Moreover, the range-dependent component of the static APS (@aric_range) is @ long-
wavelength component that can be removed along with the dynamic APS (@4namic),
which behaves as long-wavelength signals. For simplicity, the sum of @gic range and

(denamic is denoted as Prurbulencer and Pstatic _stratification is denoted as Pstratification-
Patm = Bzr Z+ (BO + ,31I’ + (denamic> = Qstratification T Prurbulence (5)

The ITD strategy for atmospheric correction of a single interferogram mainly includes the
following steps: subtraction of stratification from the unwrapped interferogram and
extraction of long-wavelength signals from the stratification-corrected interferogram
(Corinthios 2003). The procedure of the proposed ITD strategy for atmospheric correction
of a single interferogram is given as follows:

Step 1: Mask generation of large-deformation areas.

Step 2: Two-dimensional phase unwrapping of the interferogram.

Step 3: Coherence estimation.

Step 4: Regression of the stratification model using coherent pixels.

Step 5: Subtraction of stratification from the unwrapping interferogram.

Step 6: Extraction of long-wavelength signals from the stratification-corrected
interferogram.
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Step 7: Interpolation of the long-wavelength signals for the masked and low-coherent
pixels.

Step 8: Subtraction of the turbulence from the stratification-corrected interferogram.
The procedure stops if the iteration reaches a user-defined maximum number of itera-
tions. Otherwise, the algorithm adds stratification to the final resultant interferogram and
repeats steps 4-8.

3. Real world case studies

To verify the ability of the range elevation and ITD model to achieve atmospheric stability
and strong flow and regional phase correction, the Woda landslide and Miyun open-pit
mine are selected as experimental areas. The environmental characteristics of the test
area are as follows (see Table 1): the monitoring distance of the Woda landslide is 1 km-
3.3 km, and the mine is not only high in altitude but also close to rivers, while the Miyun
open-pit mine monitoring distance is 0.3 km-1 km, altitude is 158 m, and there is no river
around.

3.1. Woda landslide

The Woda landslide is located in Sichuan Province, China, at an altitude of approximately
3550 m. The landslide body is not only high in altitude but also features rivers around the
landslide body, which makes the atmospheric flow conditions more complex. It is an ideal
experimental site for atmospheric algorithms. As shown in Figure 2, there is obvious
deformation in the landslide mass. Three points were selected from the deformation area
of the landslide, as presented in Figure 2(a), to examine their temporal evolution. From

Table 1. Monitoring parameters of the two study areas.

Monitoring range (km) Altitude (m) River
Woda landslide 1-33 3550 m v
Miyun open-pit mine 0.3-1 158 m X
(a) - _ (b) Deformation time series

88.72E BIVE 98.76E

9884°E 9886'E

34N

31.46'N SR g S 346N

31.44°N S

31N

P AP SR AU RS PSP S S S S
Apr/2017 Jul/2017 Oct/2017 Jan/2018 Apr/2018 Jul/2018 Oct/2018 Jan/2019 Apr/2019 Jul/2019

5. 9874E  9876E  9878E  98SE  9BBZE  UBS4E  9BBEE Time

Figure 2. Spaceborne InSAR (Sentinel-1, ascending track 99) from May 2017 to May 2019. (a)
Cumulative displacement map. (b) Displacement time series of the three points.



5940 (&) B.LIETAL.

Figure 2(b), point 1 exhibited an approximately =160 mm displacement. The deformation
of landslides is closely related to rainfall. In the rainy season, the deformation of landslides
accelerates, but there is a lag period of one month. In the dry season, the deformation of
landslides is slow.

3.1.1. Deformation data acquisition and processing of the Woda landslide

From 4 July 2019 to 13 July 2019, the authors carried out a discontinuous monitoring
campaign using GBR equipment to verify the applicability of the three methods on the
Woda landslide considering the safety of the instrument. In this context, a total of seven
datasets were sufficient to obtain reliable deformation results (see Table 2) and achieve
discrete monitoring of the landslide.

In this study, a GAMMA portable radar interferometer was employed. It can not only
produce high spatial (0.75 m in range, 6.8 m in azimuth at 1 km) and temporal resolution
(10 s) but can also be deployed flexibly to customize the observation. The GPRI-Il was
mounted on a stationary concrete base, scanning the landslide at a temporal resolution of
20 minutes. To maximize the sensitivity of the GBR equipment in measuring deformation,
the radar’s observation vector must be as parallel as possible to the displacement vector.
Due to the small elevation difference between the equipment and the landslide, the
antenna incidence angle is set to 10 degrees. To encompass the full view of the landslide
boundaries, we selected a 40° rotation angle and a 1 km to 3.3 km valid observation
distance with respect to the radar (see Table 3). The weather conditions varied dramati-
cally on each of the seven days of data collection. During the same monitoring activity, it
could be foggy in the morning, sunny at noon and rainy in the evening. For all the data,
the image resolution was set to 3.75 m in the range direction and 3.5 m at 1 km in the

Table 2. Timetable of the measurement campaign.

Campaign Date Number of scans
1 20190704120657-20190704200652 25
2 20190705163240-20190706015241 29
3 20190706060332-20190708064331 76
4 20190708134944-20190709124944 70
5 20190709225456-20190710215456 70
6 20190711034954-20190711072954 12
7 20190712030615-20190713020615 70

Table 3. Summary of the main acquisition parameters and
data processing parameters for the Woda landslide.

Parameters Values
Acquisition dates 4 July 2019 ~ 13 July 2019
Effective measurement range 1~33km
Revisiting times 20 minutes
Incidence 10°
Centre azimuth angle 335°
Azimuth start angle 0°
Azimuth end angle 40°
Coherence threshold 0.6
Multi look (range: azimuth) 5:200

Phase unwrapping Minimum cost flow
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azimuth direction with an image size of 614 x 199. For all the campaigns, 352 images were
processed within one unit.

An overview of the observed landslide is shown in Figure 3(a). The area marked with
the yellow polygon indicates the monitoring area of the landslide, and the point marked
with the red star shows the monitoring position. A schematic diagram of the acquired GBR
data is displayed in Figure 3(b). The schematic of the proposed strategy is displayed in
Figure 4 (Wang et al. 2019). A block dot represents one acquisition, and a rectangle
represents a single GPRI-Il data campaign. The GBR time series analysis chain is based on
the small baseline subset (SBAS) algorithm (Pepe et al. 2005; Hooper 2008; Lauknes et al.
2010).

To improve the calculation efficiency, a new time series estimation method (Davies and
Blewitt 2000) should be used. The time series estimation produces an optimal solution
within each unit. However, the solution for a unit is not necessarily global when multiple
units are required. To solve this issue, nearby units can be linked by their common
coherent pixels in the time series. The adjacent units are then merged into a longer
unit, and the optimal solution for the whole campaign can be achieved. Because the time
series is analysed within each unit independently, the selected coherent pixels in different
units may also be different. To ensure an optimal solution for the global unit, all units may
be merged into a unit on the basis of the two coherent pixel sets.

(b) 98.80°E 98.82°E 98.84°E 98.86°E 98.88°E

T
1.46°Nl j

g

1 o

/ 4
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g 31.44°N
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O8.86°E  08.88°E

Figure 3. An overview of the observed landslide and schematic diagram of the acquired GBR data. (b)
The blue box indicates the image scope of GPRI-II. The red polygon shows the landslide area. The black
star indicates the location of the GBR.

1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit

Campaign 1 Campaign2 Campaign 3 Campaign 4 Campaign 6

Without repositioning errors [C——Joverap

Figure 4. Schematic diagram of the GBR data types. For example, assume two units are defined with
a window size of 16 and a temporal baseline constraint of 3 (i.e. overlap size of 6). The first unit runs
from the 1st to the 16th image, and the second unit runs from the 11th to the 26th image.
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The atmospheric correction process of all the interferograms is given as follows: (1)
generation of the interferograms (Wang, Li, and Mills 2018), (2) adaptive estimation of the
coherence (Kraut, Scharf, and Butler 2005), (3) selection of coherent pixels (Wang, Zhao,
and Liu 2018), (4) non-local filtering of the interferograms (Goldstein and Werner 1998;
Chen et al. 2010), (5) phase unwrapping (2D/3D) (Carballo and Fieguth 2000; Costantini
et al. 2002), (6) correction of the APS (Noferini et al. 2005; Pipia et al. 2006, 2008; lannini
and Guarnieri 2010; Iglesias et al. 2013; Huang et al. 2015), (7) inversion of the line-of-sight
(LOS) displacement, and (8) generation of the displacement maps.

3.1.2. APS correction model results of the Woda landslide

To estimate the GBR performance under varied weather conditions, three datasets were
selected, each comprising 2 images. Three GBR parameters were investigated to compare
the performance under different weather conditions: amplitude, interferogram, and
coherence. The amplitude is the strength of the backscattered electromagnetic signal,
which provides information on the reflectivity of the illuminated field. It can be used to
interpret the observing scene. The quality of the derived interferograms is the key to
successful deformation applications. Coherence is selected, which is the most commonly
used indicator of interferometric phase quality (Ferretti, Prati, and Rocca 2001; Eldhuset
et al. 2003; Jiang, Ding, and Li 2013). Using the data with 2 continuous images under
different periods, the images and coherences are displayed in Figure 5.

It is clear from Figure 5 that during the clear period, the dataset shows high coherence,
but the coherence decreases prominently during the monitoring period with fog and rain.
The quality and number of coherence pixels are important parameters to estimate the
final results. Moreover, they play a key role in the time series analysis.

Statistics including the overall mean coherence and the number of coherent pixels
(percentage of the total pixels of the entire image) are summarized in Table 4 As shown in
Table 5, the density of coherent pixels in the clear conditions was the highest. This
strongly suggests that the interferometric measurement under clear conditions outper-
forms that conducted under rainy and foggy conditions.

Using the algorithm described in Section 2, the deformation results of GBR are
obtained. In this monitoring campaign, a redundant network of interferograms was
constructed in which each image was allowed to generate interferograms with the two
previous and two subsequent images. In total, 352 images were processed within one unit
under different methods, and the results are displayed in Figure 6. Clearly, atmospheric
disturbances influence the time series results (Figure 6(a)). We selected 5 points from
those whose coherences were > 0.6 for the time series analysis in Figure 7. The maximum
deformation reaches 40 mm.

3.2. Miyun open-pit

The Miyun open-pit mine is located in the middle of Miyun District, Beijing, China, which
has a warm temperate semi humid continental monsoon climate. The maximum depth
of the open pit is =76 m, the stage height is 12 m, and the closed circle is 144 m. The
maximum elevation difference of the open pit is 312 m. The internal deformation is
likely to be the unstable surface deformation caused by the air flow change in the pit
(Figure 8).
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Figure 5. Images and coherences of the GPRI-Il data collected under different weather conditions on
7 July 2019. (a) Foggy conditions. (c) Rainy and foggy conditions. (e) Clear conditions.

Table 4. Statistics under different weather conditions.

Fog Rain Clear

Mean coherence 0.29 0.22 0.45
Coherent pixels (>0.6) 38,899 (12.73%) 18,768 (6.14%) 101,748 (33.30%)

Table 5. Summary of the main acquisition parameters and data proces-
sing parameters for the Miyun open-pit mine.

Parameters Values
Acquisition dates 07:21, 18 March 2019 ~ 09:03, March 2019
Effective measurement range 03 ~1km
Revisiting times 10 minutes
Incidence 10°
Centre azimuth angle 210°
Azimuth start angle -50°
Azimuth end angle 40°
Coherence threshold 0.6
Multi look (range: azimuth) 2:82
Phase unwrapping Minimum cost flow

3.2.1. Deformation data acquisition and processing of the Miyun open-pit mine

The Miyun open-pit mine was a fast-changing case with deformations during monitoring
on 18 March 2019. The study site was located in a mining area. Because of artificial mining,
the mine is in an unstable state, which allows the occurrence of deformations to be easily
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Figure 6. Results of the data collected from 4 July 2019-13 July 2019. (a) Original result. (b)
Homogeneous model. (c) Stratified model. (d) ITD. Note that all the maps presented in this paper
are subtitled in the format YYYYMMDDHHMMSS.
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Figure 7. Results of the data collected from 4 July 2019-13 July 2019, including the cumulative
displacement and deformation time series.

detected. Twelve images were acquired over one and a half hours on 18 March 2019 by
the GPRI-Il system, and the imaging parameters of GPRI are shown in Table 5. We use
a continuous mode and apply the direct integration method to integrate the 21 inter-
ferograms formed by processing each image with the subsequent two.



INTERNATIONAL JOURNAL OF REMOTE SENSING ’ 5945

(2) =

Figure 8. Overview of the Miyun open-pit mine. (a) Site map of the mine. (b) Topographic map of the
mine.

3.2.2. APS correction model results of the Miyun open-pit mine

An image and its subsequent three images were used for interferogram generation. The
results of the 4 LOS cumulative deformation maps are displayed in Figure 9. It is clear that
the range- and/or height-dependent models apply to this case. The phase filtering
method fails for short-distance monitoring, and atmospheric refraction is not complex.
We select 3 points whose coherences were > 0.6 from the LOS deformation velocity map
for the time series analysis in Figure 10. The maximum deformation reaches 4.03 mm. To
show the displacement time series, points 1-2 were selected from the deformation area,
and point 3 was randomly selected from stable areas. Points 1-2 moved away quickly
from the GPRI-Il system during the observation period, indicating a sliding process. There
is an increasing trend around point 2 towards the radar.

4. Discussion
4.1. Applicability of ITD and range- and/or height-dependent models

If a DEM is available, GPRI-Il images can be geocoded easily, and it is convenient for final
users to research. The GPRI-lIl has three antennas (one transmission antenna and two
receiving antennas). The antennas are marked TX, RX1 and RX2. The vertical distance is
25 cm between the upper RX1 and lower RX2. The images of the upper RX1 and lower RX2
are obtained synchronously, and the atmospheric phase can be neglected. In the process,
many images are required to calculate the average value of the interferogram. The
relation between elevation z and phase difference ¢ (Nico et al. 2004; Noferini et al.
2007b; Noferini et al. 2009; Rodelsperger et al. 2010) of one particular pixel can be
approximated by

o1

~ 4mb )

where A is the wavelength, r is the distance to the target and b is the vertical baseline. The
generated DEM can be used in stratified and ITD models.

To evaluate the effect of the APS model, root mean square errors (RMSEs) are intro-
duced (Yu, Penna, and Li 2017; Yu, Li, and Penna 2018). RMSEs of the interference phase in
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Figure 9. Results of the data collected from 17 March 2019 (a) Original result. (b) Homogeneous
model. (c) Stratified model. (d) ITD.
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Figure 10. Miyun open-pit mine monitoring results from 18 March 2019, including the deformation
velocity and deformation time series.

the non-deformable region and the coherent region are calculated to ensure the effect of
atmospheric correction. In other words, the smaller the RMSEs are, the better the effec-
tiveness. A pair of different interferometry sets of the Woda landslide and Miyun open-pit
mine are selected for study with homogeneous, stratified and ITD models. The RMSEs of
the four different interferometry sets for the Woda landslide are 1.36137, 1.36138, 1.2751
and 0.3585 in Table 6. However, the RMSEs of the four different D-InSARs for the Woda
landslide are 0.2956, 0.2681, 0.2720 and 0.1412. According to the results in Table 7, the ITD
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Table 6. RMSEs of the different APS models for the Woda

landslide.
APS model RMSEs
Original result 1.36137
Woda landslide Homogeneous model 1.36138
Stratified model 1.2751
ITD 0.3585

Table 7. RMSEs of the different APS models for the Miyun open-

pit mine.
APS model RMSEs
Original result 0.2956
Miyun open-pit mine Homogeneous model 0.2681
Stratified model 0.2720
ITD 0.1412
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Figure 11. Results of different interferometry analyses with different APS models. (a) The original
different interferometry for the Woda landslide. (b-d) The results of different interferometry analyses
with homogeneous, stratified and ITD models for the Woda landslide.
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Figure 12. Results of different interferometry analyses with different APS models. (a) The original
different interferometry for the Miyun open-pit mine. (b-d) The results of different interferometry
analyses with homogeneous, stratified and ITD models for the Woda landslide.

result is very poor when the distance is short and the atmospheric variables are relatively
stable, but the result is satisfactory for complex atmospheric conditions.

4.2. Mechanism analysis

From Figures 11 and 12, we find that the effects of the homogenous model and stratified
model are not exactly the same in the two study areas. The RMSEs of the standardized
model are smaller than those of the homogenous model, which indicates that the effect
of the standardized model is more obvious, and Figure 11(b,c) also illustrate this situation.
For the Miyun open-pit mine, the homogenous model and stratified model show similar
results. This is because the elevation difference of the Miyun open-pit mine is approxi-
mately 100 m, while the elevation difference of the Wada landslide is 600 m and the
landslide is close to the Jinsha River. Therefore, the effects of the stratified model and
homogeneous model in the atmospheric phase correction of the Miyun open-pit mine
area are very similar.
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Compared with ITD and range- and/or height-dependent models, it is found that the
effect is good in the research area with a large elevation difference and fast air flow. In
locations with a small elevation drop and where the air flow environment is not complex,
the ITD method extracts the wavelength of long wave signals from the stratification-
corrected interferogram. Therefore, when the threshold of wavelength is set to be large,
the ITD method becomes a stratified model, which also shows that the APS in the research
area of the Miyun open-pit mine is very poor.

5. Conclusions

This paper mainly analysed the utility of GBR for monitoring landslides and open-pit
mines under different APS correction models. For long-distance monitoring with complex
atmospheric disturbances, the range- and/or height-dependent models fail. However, the
ITD method can effectively address complex atmospheric disturbances. The research
indicates that long-distance monitoring under complex atmospheric conditions is suita-
ble with the ITD method. Range- and/or height-dependent models and the ITD method
are both effective for short-distance monitoring and simple atmospheric conditions. If the
threshold of wavelength is set to be large, the ITD method becomes a stratified model.
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