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Abstract—In this contribution, a car-borne SAR and

InSAR experiment is described. The slope of a valley

was imaged by means of a single-pass InSAR system

mounted on a car driving on roads along the bottom of the

valley. The GAMMA portable radar interferometer GPRI-

II hardware with a modified antenna configuration was

used for data acquisition. The experimental setup (1), SAR

imagery focused along a slightly curved sensor trajectory

(2), and first interferometric results (3) obtained using this

configuration are presented.
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I. INTRODUCTION

Synthetic aperture radar interferometric techniques

have been widely used to produce digital elevation

models (DEMs) on a regional to global scale and to

measure displacements in repeat-pass mode. Apart from

spaceborne and airborne radars, also ground-based radar

systems have appeared [1]–[4]. Ground-based radars

add complementary advantages, such as timely in-situ

measurements taken from a suitable viewpoint and re-

peatability of measurements in both time and space.

They are therefore suitable to measure ground motion, to

monitor land-slides, as well as to measure the topography

of the illuminated area. In 2007, Gamma Remote Sensing

developed a portable terrestrial real-aperture radar inter-

ferometer operating in the Ku-band at 17.2 GHz [1], [5].

The one-transmit-dual-receive configuration allows for a

simultaneous acquisition of two SAR data sets in a single

pass. Therefore, an interferometric evaluation of the illu-

minated scene is possible including rapidly decorrelating

targets such as a forest. In addition, the atmospheric

phase contributions cancel out and there is potentially no

need to separate motion from topography for repeat-pass

measurements. For the experiment described here the

GPRI-II radar was employed in a modified configuration

to enable a synthetic aperture radar acquisition mode

from an agile platform.

II. EXPERIMENTAL SETUP

In Fig. 1(a) the GPRI-II real-aperture terrestrial radar

in its standard configuration is shown [2]. For the

synthetic aperture radar experiment described here the

following modifications were applied to the standard

GPRI-II hardware:

1) The long real-aperture antennas were replaced by

horn antennas to get a wider beamwidth which is

suited for the synthetic aperture radar mode.

2) A different antenna rack was used such that the

antennas can be mounted on the roof-top of a car.

3) Accurate positioning and basic attitude informa-

tion was acquired by means of carrier-phase-based

differential GPS measurements at an update rate of

20 Hz.

Interferometric SAR data was acquired along two

different roads (curved/straight) at different nearly con-

stant velocities. The example data set presented in this

contribution was taken from a slightly curved road at an

average speed of 21m/s. An overview of the system
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(a) (b)

Fig. 1. (a) GPRI-II standard configuration (terrestrial real-aperture radar). (b) Modified antenna configuration and antenna rack including

GPS antennas for accurate positioning as used in the CARSAR experiment.

TABLE I

GPRI-II GROUND BASED RADAR SYSTEM SPECIFICATIONS FOR

SYNTHETIC APERTURE RADAR MODE.

Carrier frequency 17.2 GHz

Chirp bandwidth 200 MHz

Type FMCW

Chirp length 0.001 s

Range 3dB beamwidth 18 deg

Azimuth 3dB beamwidth 16.9 deg

Ground speed 21 m/s

Interferometric baseline 0.25 m

Off-nadir angle 110 deg

parameters for this configuration is given in Table I.

Fig. 1(b) shows the modified radar system along with

the GPS antennas as mounted on the roof-top of a car

during their the synthetic aperture radar experiment.

III. PROCESSING METHODS

The linear FMCW-type GPRI-II radar works in

dechirp-on-receive mode, thus the received signal s(t)

is mixed with the reference signal. This transforms the

data to a deramped signal sd of the form [6]:

sd(t) = s∗(t)exp(j2πfst+ jπγt2), (1)

where fs is the start frequency of the chirp and γ is the

chirp rate. The phase of the resulting deramped signal is

ϕd(t) = (2πfstn − πγt2n) + 2πγtnt, (2)

which can be directly related to range distance via a

range-Fourier transform. tn is the two-way time delay to

a target n. In contrast to the matched-filter-based range

imaging, a range-dependent quadratic phase error (within

brackets), known as the residual video phase, remains

after this range-compression operation [7]. While for

static operation mode—which is the original purpose

of the GPRI-II radar—this residual video phase can be

neglected it has to be compensated if substantial range-

cell migration occurs in the synthetic aperture operation

mode.

SAR focusing along the slightly curved sensor tra-

jectory following a main road was performed using a
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(a) (b)

(c) (d)

Fig. 2. Example SAR imagery of a slope of a valley taken from the car-borne interferometric SAR system: (a) SAR intensity image, (b)

photograph of the imaged slope of the valley, (c) interferogram (blended with intensity image), (d) coherence magnitude.

time-domain back-projection processing approach [8].

Accurate positioning information was obtained by post-

processing of carrier-phase-based short-baseline differ-

ential GPS data relative to a GPS ad-hoc reference sta-

tion that was set up on the test site. Due to the long chirp

duration of 1 millisecond the start-stop approximation

is not valid and therefore the time varying position of

the sensor has to be taken into account during back-
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projection processing. A detailed treatment of this aspect

is found in [9]).

IV. RESULTS

In Fig. 2(a) a focused SAR image taken from the inter-

ferometric radar mounted on the roof-top of a car driving

along a slightly curved highway is shown. Fig. 2(b)

shows a photograph of the valley slope imaged by the

car-borne SAR system. Figures 2(c) and 2(d) depict the

single-pass interferogram and the coherence magnitude,

respectively.

V. CONCLUSION

A CARSAR experiment using a modified configura-

tion of the Ku-band FMCW GPRI-II terrestrial radar

mounted on the roof-top of a car was described. First

results of the campaign were presented including focused

SAR imagery as well as single-pass interferometry from

a slightly curved sensor along a highway demonstrating

SAR imaging and single-pass SAR interferometry from

an agile car-borne radar system. The SAR and InSAR

data takes acquired within this experiment, which in-

cludes single-pass and repeat-pass data takes, are being

used as a testbed for development and testing of SAR

focusing and motion-compensation algorithms and also

to evaluate interferometric SAR applications.
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