
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

4D surface kinematics monitoring through terrestrial radar interferometry
and image cross-correlation coupling

Niccolò Dematteisa,b, Daniele Giordana,⁎, Francesco Zuccab, Guido Luzic, Paolo Allasiaa

aGeohazard Monitoring Group, Institute of Research for Hydro-Geological Protection, National Council of Research, Torino, Italy
bDepartment of Earth and Environmental Sciences, Università di Pavia, Pavia, Italy
cGeomatics Division, Centre Técnologic de Telecommunicacions de Catalunya, Castelldefels, Spain

A R T I C L E I N F O

Keywords:
3D motion
Surface kinematics
GBSAR
Image cross-correlation
Sensor network
Data integration
Interferometry
Glacier kinematics
Remote sensing
Monitoring

A B S T R A C T

Complex gravitational phenomena can require terrestrial remote sensing solutions for monitoring their possible
evolution, especially when in situ installations are not possible. This study merges terrestrial radar inter-
ferometry (TRI) and image cross-correlation (ICC) processing, which can detect complementary motion com-
ponents, to obtain a 3-dimensional system able to measure the actual surface motion field of a pre-defined target.
The coupling can be carried out on data acquired from different installations of the devices, and by applying
specific transformations of the related coordinate systems. The data georeferencing is a critical issue that affects
the correct spatial correspondence of the data and a new approach for georeferencing radar data is proposed. The
result is a spatio-temporal (3+ 1-dimensional) high-resolution representation of the surface kinematics. The
presented method has been tested for the measurement of the Planpicieux glacier surface kinematics (NW of
Italy). The error analysis revealed a millimeter accuracy and precision of the measurement and a georeferencing
uncertainty of a few metres.

1. Introduction

The necessity of strategies of preventive alert and risk mitigation
related to gravitational slope processes, especially in mountain areas
(e.g., landslides, avalanches, glacier outbursts, rock falls), requires
systematic observation in order to a full understanding of these phe-
nomena (Kääb et al., 2005). A particular attention is addressed to the
surface kinematics monitoring, because in some cases it is possible to
detect failure precursors (Faillettaz et al., 2015; Fukuzono, 1985).

Often, these processes are located in remote and harsh environ-
ments, consequently the access in these areas is usually difficult and
perilous or even impossible. Therefore, various technologies and tech-
niques have been developed and proposed for remotely monitoring
gravitational slope phenomena (Arenson et al., 2016; Delacourt et al.,
2007; Kääb et al., 2005; Leprince et al., 2008). Actually, the majority of
the monitoring systems suffer some limitations. E.g., terrestrial radar
and monoscopic photogrammetry can measure only partial components
of the actual motion. Total stations and GPSs require the in-situ in-
stallation of artificial targets or sensors and they provide only punctual
data. Other approaches produced digital elevation models (DEMs) and
derived the kinematics through volume difference (e.g., structure-from-
motion, SFM, and terrestrial laser scanner, TLS). Finally, space- or air-

based remote sensing systems measure spatially distributed data over
wide areas with high precision, though they require high financial costs
and the survey repeatability is strongly limited; moreover, the mea-
surement can be affected by unfavorable geometries.

In literature, different studies focused on remote sensing applica-
tions that can estimate the 3D surface deformations. Among the cate-
gory of space-based systems, Wright et al. (2004) proposed a sort of
multi-viewed stereoscopy of interferometric synthetic aperture radar
(SAR) data that relies on the availability of SAR images acquired with
four different look directions.

Concerning the ground-based systems, some studies proposed so-
lutions for estimating the surface motion through the difference of
DEMs acquired either by TLS (Bitelli et al., 2004) or by SFM (Piermattei
et al., 2016; Roncella et al., 2014). But, cause the DEMs are defined on a
2D surface, f x y z( , ) = , their difference provides 1D deformation
measurements along the vertical axis (Monserrat and Crosetto, 2008).
Monserrat and Crosetto (2008) proposed an algorithm of surface
matching able to provide 3D deformations that proved to perform well
for TLS data acquired from short distances. However, the main draw-
back of the TLS acquisitions remains the limited revisiting time of the
measurement. Manconi et al. (2013) proposed an estimate of the 3D
deformation by spatially interpolating over a DEM the punctual data
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acquired by a total station. Other works projected the data acquired by
GBSAR (Dematteis et al., 2017; Luzi et al., 2007), satellite SAR (Huang
and Li, 2011) or produced through image cross-correlation (ICC)
(Gabrieli et al., 2016; Giordan et al., 2016) along the expected max-
imum gradient direction or the expected flow direction (Schwalbe and
Maas, 2017). Similarly, Ahn and Box (2010), Messerli and Grinsted
(2015), and Travelletti et al. (2012) applied the image orthorectifica-
tion and consequently adjusted the ground sampling distance (GSD) of
each pixel according to the incident angle. Both approaches made the
strong assumption of the invariance of the surface morphology during
the survey (Travelletti et al., 2012), though this might be not valid in
presence of quite active phenomena or measurements separated by long
time intervals. Schwalbe and Maas (2017) adopted a multi-camera
network to produce updated DEM integrated in the processing chain.

In recent years, the research is focusing on the integration of dif-
ferent types of monitoring systems; thereby it is possible to overtake the
limitations of the single devices and acquire information that are more
representative of the phenomenon. Kenner et al. (2014) merged air-
borne LiDAR data to assess vertical deformations by means of DEM
difference with aerial photogrammetry for detecting horizontal move-
ments through ICC. Also, TLS and terrestrial radar interferometry (TRI)
were coupled for monitoring 3D deformations of archaeological
monuments (Tapete et al., 2013), buildings (Marambio et al., 2009) and
cliff evolution (Lim et al., 2005). Piermattei et al. (2016) used ground-
based photogrammetry and Scaioni et al. (2017) combined unmanned
aerial vehicles (UAVs) and ground-based photogrammetry for assessing
the evolution of 3D glacial processes, in particular related to mass
balance change. Malet et al. (2016) monitored a set of landslides
adopting a network of permanent GPSs, TLS, and photogrammetric
cameras.

In the present paper, we propose a method for measuring the actual
3+ 1D surface kinematics of a gravitational slope phenomena through
the coupling of the data collected by two different ground-based remote
sensing systems, (i) a ground-based SAR (GBSAR) and (ii) a monoscopic
visual-based system (VBS). Their data are processed respectively
through radar interferometry and image cross-correlation (ICC) tech-
niques. The 3-dimensional reconstruction of the motion vector is pos-
sible because the devices observe different and complementary motion
components: the line of sight (LOS) -parallel component is measured by
the GBSAR, while the VBS detects the two components orthogonal to
the LOS. One of the objectives of our approach is the application of the
method to purely remote sensing measurements from medium range
(i.e., a few thousand metres).

Furthermore, we present the method application and results related
to a 24 days-long campaign surveying the Planpincieux glacier that was
carried out on September 2015. The conclusive part of the paper is
dedicated to some considerations and comments concerning the pro-
posed method.

2. Dataset and study site

The data presented in this paper were collected during the period 04
– 27 September 2015. The goal of the study was the measurement of the
surface displacements of the Planpincieux glacier that is placed on the
southern side of the Mont Blanc massif, in the Italian Alps (Fig. 1).

The Planpincieux glacier is a polythermal glacier with elevation
ranging between 2500 and 3500m. This paper deals with the analysis
of the data related to the lower part of the glacier, which is classified as
a “temperate terrace avalanching glacier” (Faillettaz et al., 2015;
Giordan et al., 2016; Pralong, 2005). It reaches an altitude of ap-
proximately 2900m and it is composed of two main icefalls separated
by a central ridge of partly-exposed bedrock. The western side is the
most active and shows a highly crevassed texture with a mean slope of
32°; it is characterized by a frontal 20m-high vertical ice wall just
above a steep bedrock face from which several failures of ice are trig-
gered periodically during the warm season. In the past, several major

ice avalanches and outbursts of water pocket occurred, and in some
cases they threatened the underlying village of Planpincieux and da-
maged the road.

The entire body of the Planpincieux glacier is continuously mon-
itored for research and civil protection purposes since 2013 by a
monoscopic visual-based system (VBS) that is installed on the opposite
valley side w.r.t. the glacier, at an elevation of 2305m and a distance of
approximately 3800m (Giordan et al., 2016). It consists of two con-
sumer-grade cameras with APS-C sensors of 18 Mpx that are equipped
with 297mm (TELE module) and 120mm (WIDE module) focal lens
(camera specifications are provided in Table 1).

The cameras are installed on a concrete plinth that is placed inside a
plastic shelter box. An energetic module composed of two solar panels
supplies electricity to the VBS, therefore the system can work autono-
mously and it is completely controlled by remote; both modules of the
VBS acquire one image per hour. Since shadows and illumination
changes can deeply affect the results of the ICC (Ahn and Box, 2010;
Debella-Gilo and Kääb, 2011; Giordan et al., 2016; Messerli and
Grinsted, 2015; Piermattei et al., 2016; Travelletti et al., 2012), we
manually selected for the processing one image per day acquired be-
tween 5 and 7 pm. During the period of the study, adverse weather
conditions prevented the correct acquisition of some data, 21 of 25 and
20 of 25 images of the TELE and WIDE modules respectively were
adopted for the processing.

During the same period, a commercial Ku-band (IBIS-L) ground-
based SAR (GBSAR) was installed in the Planpincieux hamlet at the
elevation of 1582m. The mean distance from the glacier was approxi-
mately 2500m. That positioning aimed at maximizing the parallelism
between the LOS and the expected motion direction of the western
icefall; also, a portion of the eastern tongue was visible from the GBSAR
location. The radar acquired one image every 16min and it collected
more than 2200 images during the time span of the experimental setup.

Furthermore, a 1-m resolution digital elevation model (DEM) was
available for the study, which was acquired by an airborne LiDAR
survey in June 2014; during the LiDAR measurement, it was acquired
also a high-resolution orthophoto of the glacier.

For further details concerning the site study and the datasets refer to
Dematteis et al. (2017) and Giordan et al. (2016).

3. Methods

The method we propose enables estimating the glacier surface de-
formations measured by GBSAR and VBS devices. These instruments
can detect different and complementary components of the motion
vector; therefore, their results can be coupled to reconstruct the actual
3D surface kinematics.

Overall, the data processing is composed by three main procedures:
(i) interferometric processing of the radar images; (ii) image cross-
correlation (ICC) of the photographic data and (iii) georeferencing and
coupling of the results of the two different instruments. The workflow
of the method is depicted in Fig. 2.

3.1. Image cross-correlation

Digital image processing methodologies for measuring fluid motion
fields were initially developed in the ‘90s for particle images veloci-
metry (PIV) (Willert and Gharib, 1991). Applications in earth sciences
are more recent and they aim at estimating the deformations of natural
active surfaces such as landslides or glaciers with the support of air-
borne (Debella-Gilo and Kääb, 2011; Kääb et al., 1998; Scherler et al.,
2008) and ground-based images (Ahn and Box, 2010; Fallourd et al.,
2010; Giordan et al., 2016; Messerli and Grinsted, 2015; Schwalbe and
Maas, 2017; Travelletti et al., 2012; White et al., 2003). Similar ap-
proaches were also applied to non-visual images, e.g., radar amplitude
maps (Casu et al., 2011; Strozzi et al., 2002) or interferometric maps
(Raucoules et al., 2013).
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Usually, the surface motion is evaluated by computing the cross-
correlation between a template image and a searching image; the dis-
placement is then estimated according to the location of the maximum
correlation coefficient.

In this study, we computed the ICC in the frequency domain (often
referred as phase correlation) via discrete Fourier transform (DFT) with
the algorithm proposed by Guizar-Sicairos et al. (2008), which allows a
cost-efficient sub-pixel offset estimation with a two-step matrix-mul-
tiply; that operation strongly limits the amount of zero-padding, thus
reducing the computational costs. That matching algorithm runs two
passes of the DFT, after the first pass it shifts the center of the

interrogation area according to the obtained pixel offset and then runs
the DFT only in the neighourhood of a limited subset of the data to
achieve a finer accuracy. This solution reduces the loss of information
caused by the displacement of the searching area that usually affects
phase correlation algorithms (Thielicke and Stamhuis, 2014). Other
methods, such as the minimum quadratic difference (Gui and
Merzkirch, 1996), as well as the direct cross-correlation (Keane and
Adrian, 1992) were considered but not applied because they have
higher computational costs. Pust (2000) and Thielicke and Stamhuis
(2014) estimated a difference of the computational time of two orders
of magnitude for searching windows of 128 px between phase cross-
correlation and direct cross-correlation.

The image processing chain adopted in our work consists in five
main procedures: (i) manual images selection, (ii) illuminant correc-
tion, (iii) co-registration, (iv) pixel offset matching and (v) automate
outlier detection. Fig. 3 we illustrates the steps of the ICC chain.

The first step concerned the manual selection of one image per day
to obtain a sequence with homogeneous and uniform illumination and
visibility conditions (Ahn and Box, 2010; Debella-Gilo and Kääb, 2011;
Giordan et al., 2016; Messerli and Grinsted, 2015; Piermattei et al.,
2016). Therefore, we selected the images acquired when the sun did not
lit the glacier surface directly and the diffuse illumination prevailed; in

Fig. 1. Overview of the study area. The entire Planpincieux glacier is highlighted in sky blue and the lower part is surrounded by a blue box. The locations of the
GBSAR and visual-based station are depicted as green squares.

Table 1
DSLR camera specifications.

Camera
model

Sensor Resolution (px) Focal
length
(mm)

ISO Aperture lens

TELE Canon
EOS 600D

CMOS
APS-C

3456×5184 120 200 f/8

WIDE Canon
EOS 100D

CMOS
APS-C

5184×3456 297 200 f/8
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particular, we used pictures taken during the late-afternoon hours (i.e.,
5–7 pm). Thus, the shadow changes due to the surface roughness had a
minimum impact on the cross-correlation computation.

Next, we estimated the scene illuminant with principal component
analysis (Cheng et al., 2014) and then we subtracted it from the scene;
thereby, we further make the illumination conditions more uniform
among the different images.

In the third step, all the images were coregistered with respect to
(w.r.t.) a common image (i.e., the first image of the stack) in order to
correct possible movements of the camera or optical path changes. The
matching algorithm was applied to an area of stable surface (i.e.,
bedrock) and the images were translated in the vertical and horizontal
directions according to the obtained pixel offsets; most coregistration

absolute values ranged between 0 and 5 px, only in a few images the
horizontal offset was approximately 10 px. Further analysis did not
reveal image rotations.

The subsequent operation was the displacement assessment by
means of the sequential ICC computation on chips identified by a
sliding window. For the TELE images, we adopted a 256 px-side sliding
window with 75% overlapping (i.e., sliding steps of 64 px), while for
the WIDE images the window size and sliding step were of 128 px and
64 px. Thereby obtaining a motion field mapped on a 64 px-side grid for
both cases.

Finally, we dealt with the refinement of the results. Multiple sources
of error can intervene during the processing (i.e., shades and shadows,
non-optimal illumination, image defocusing or morphological surface

Fig. 2. Workflow of the proposed method for 3D data coupling.

Fig. 3. Step sequence of the image processing method: (i) the raw image is acquired, (ii) the illuminant is removed, (iii) the image is converted in grey scale and
coregistered, then (iv) the ICC is computed with the sliding window obtaining the raw results, finally (v) the automate outlier detection and removal is operated. The
picture was acquired by the TELE module on 06/09/2015 at h19:00.
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changes) often difficult to detect and evaluate separately (Gabrieli
et al., 2016). Actually, correcting the correlation anomalies is a crucial
step to obtain reliable results. Various methods have been proposed to
this aim, some studies adopted optimized methods to remove the out-
liers directly during the correlation computation (Ahn and Box, 2010;
Hart, 1998), while other approaches rely on empirical or statistical
analysis in the post-interrogation phase (Debella-Gilo and Kääb, 2011;
Giordan et al., 2016; Westerweel and Scarano, 2005). We opted for the
normalized median test proposed by Westerweel and Scarano (2005); it
consists in the analysis of the parameter r0 defined through the fol-
lowing equation

r U U
r

| |m

m
0

0= −
+ ∊ (1)

where U0 is the investigated datum, Um is the median of the 5 5×
neighbours of U0, U U U{ , , , }1 2 24⋯ , excluding U0 from the computation,
rm is the median of the residuals defined as r U U| |i i m= − , with
U U U U{ , , , }i 1 2 24= ⋯ , and ∊ is an offset introduced in case rm was too
close to zero. Westerweel and Scarano (2005) found out that a value of
r 20 > corresponds approximately to the 90th-percentile of the residuals,
whatever the data values or distributions are and it is rather insensitive

to the window size. That means that the method can be considered a
“universal outliers’ detection”. They also suggest the value of 0.1 for the
∊ term.

After outliers rejection, missing data were estimated by Natural
Neighbour interpolation (Sibson, 1981) and a low-pass filter was ap-
plied to the resulting maps for taking into account the sliding window
overlapping; the averaging filter had 7 7× and 3 3× side for the TELE
and WIDE images respectively.

3.2. Interferometry

TRI proved to be a valuable tool in the monitoring of glaciers
(Allstadt et al., 2015; Noferini et al., 2009; Riesen et al., 2011). In our
study, we performed the interferometric processing to detect the sur-
face motion of the glacier along the LOS direction.

Radar interferometry is the process that analyses the differential
phase between two different images, aiming at estimating the dis-
placement occurred during the two acquisitions. For the sake of com-
pleteness, the basic theory of interferometry is briefly described in the
following. For a more exhaustive explanation of the SAR interferometry
we refer to Bamler and Hartl (1998) and Rosen et al. (2000); while in

Fig. 4. (a) Map of mean temporal coherence (γ ) and (b) map of amplitude dispersion (DA) of the backscattered signal of the GBSAR. The investigated area is included
in the black box; the glacier area is characterized by high values of DA, while bedrock displays lower values. Low values of γ are associated to areas in shade.
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Caduff et al. (2015); and Monserrat et al. (2014) it is possible to find
recent reviews of the TRI literature.

Let consider the electromagnetic wave scattered by a single target;
the distance covered by the emitted signal is R λ ϕn λ

π2= + , where λ is
the wave length and ϕ is the phase. Therefore, a motion occurred be-
tween two acquisitions is equal to

R R λ
π

ϕ ϕ π λ
π

π
4

( 2n )
4

(Φ 2n )2 1
2

1− = − + = +
(2)

where π2n belongs to the intrinsic ambiguity of the phase periodicity
(i.e., phase wrapping).

Actually, in the cases when the radar is maintained in the same
position (zero baseline), the interferometric phase is given by the sum
of different terms, that is

φ φ φΦ d a s= + + (3)

where φdis the phase directly related to the displacement of the target,
φa is due to the atmospheric condition change (often named atmo-
spheric phase screen, APS), which alters the optical path of the elec-
tromagnetic wave, and φs is the term including thermal noise and phase
change caused by the variation of the scattering properties (Luzi et al.,
2004). Accordingly, some data processing is necessary to determine the
contribute of the different terms and correctly estimate φd.

In our work, we discriminated the areas illuminated by the radar
signal from the shadowed regions. To this aim, points displaying a mean
temporal coherence γ lower than an empirical threshold (i.e., γ 0.55< )
were masked out (Fig. 4). In other studies, the selection of the scattering
points was driven by an amplitude dispersion- (DA) based criterion
(Ferretti et al., 2001). Ice metamorphisms and snow deposition in-
troduced strong changes of the dielectric properties of the target,
causing high variability of the scattered signal amplitude and yielding
substantial values of DA. In fact, the DA observed on the glacier area
displayed values ranging between 0.4 to more than 1 (Fig. 4). There-
fore, a DA-based criterion to select shaded areas was not suitable.

The second operation aimed at resolving the phase ambiguity by
applying a 2-D unwrapping algorithm (Costantini, 1998). Such algo-
rithm introduced different phase offsets among not connected regions.
Therefore, it was necessary to manually identify the main compact
areas and then subtract the corresponding phase offsets. That operation
further reduced the unwrapping errors and significantly improved the
result accuracy and precision.

Subsequently, the interferograms affected by strong decorrelation
were discarded by the temporal stack of the interferograms, thereby
reducing errors due to noise or residual phase wrapping. The huge
amount of data made necessary to establish an automate criterion to
reject decorrelated interferograms; therefore, we established an em-
pirical threshold of the mean spatial coherence γ 0.65〈 〉 < to identify the
interferograms to be discarded (Dematteis et al., 2017).

Eventually, we dealt with the APS removal. The glacier was located
1200m higher than the GBSAR positioning and it was characterized by
significant elevation changes in the investigated area. As a con-
sequence, the atmospheric variables, which drive the optical path
length of the electromagnetic wave, might significantly vary and thus
affect the measurement of the interferometric phase. Hence, being that
for stable areas we expected φ 0d = and  φ{ } 0s = (i.e., white noise), the
value of φa was estimated with a polynomial regression of degree two of
the interferometric phase observed on 5190 points, corresponding to
the stable areas (i.e., points with DA 0.35< ); the elevation coordinates
were introduced as an explicit variable to take into account the topo-
graphic influence on the atmosphere (Dematteis et al., 2017; Iglesias
et al., 2014; Noferini et al., 2005).

The results of the interferometric process are represented on the
radar maps with a constant range resolution (i.e., 0.43 m). Conversely,
the azimuth resolution varies linearly with the range and it is ap-
proximately 11m @2500m. As a result, the radar data are mapped on a
grid with non-uniform resolution.

3.3. Data georeferencing and coupling

TRI and ICC provide different and complementary motion compo-
nents that can be merged to obtain a 3-dimensional representation of
the surface motion. The necessary conditions to couple the different
data is that they must be represented in the same coordinate system
(CS). Therefore, (i) the reference axes must be parallel and (ii) the map
resolutions of the data must be equal.

The former condition is automatically achieved if the two mea-
surement systems observe the target area with the same LOS.
Conversely, when the systems acquire from different spots, their CSs
must be geometrically transformed in order to make their axes parallel.
In addition, in this second case, the motions measured by the different
systems are not orthogonal, thus it is necessary to identify only the
linearly independent components to obtain the actual 3D motion
vector. The second necessary condition can be achieved through the
application of spatial interpolation on a regular grid. Therefore, it is
required the support of a DEM on which the data are projected; in our
case, we used a 1-m resolution DEM. Finally, the georeferencing allows
identifying the corresponding data with the same spatial coordinates.

Hereafter we will refer to CSgeo as the 3D geographic CS in UTM 32 T
(WGS84) coordinates X Y Z( , , ); CSv stands for the 2D CS of the visual
images, expressed in pixel coordinates u v( , ); and CSr for the 2D radar
CS with local Cartesian coordinates x y( , ).∗ Here and in the following
the apex * is used to highlight that the related coordinates are not
horizontal.

3.3.1. Photographic images
A transformation matrix was computed using an image orthor-

ectification procedure to obtain a correct georeferencing of the ICC
displacement map. The photographic images were handled through the
orthorectification process that allowed projecting the photographs on a
3D surface (i.e., the DEM) adjusting the deformations due to topo-
graphy and perspective, thereby the scale of the image was constant
when it was projected in the new CS. The principle of the image or-
thorectification is based on the pinhole camera model, according to
which, each point in the real 3D world is projected in the 2D image
plane by a straight line passing through the ideal centre of the camera.

It is well known (Luhmann, 2009) that the necessary camera ex-
ternal and internal parameters to operate the image orthorectification
can be estimated by the knowledge of the coordinates in the real 3D
world and in the CSv of at least six corresponding points within the
observed area. The most common approach consists in measuring the
coordinates of a set of ground control points (GCPs) clearly recogniz-
able within the photograph by means of GPSs or other topographic
instruments; sometimes, this is achieved by placing artificial targets
within the study area (Aguilar et al., 2008; Messerli and Grinsted, 2015;
Schwalbe and Maas, 2017; Travelletti et al., 2012).

Instead, our work aimed at measuring surface deformations purely
from remote, thus avoiding any access in the studied area, including the
installation of artificial GCPs. Therefore, we manually selected a set of
38 and 35 recognizable features in the TELE and WIDE images re-
spectively, such as bedrock cracks, pinnacles or sharp edges (Messerli
and Grinsted, 2015; Piermattei et al., 2016). We had available TELE
photographs taken on July 2014 (i.e., contemporary to the DEM and
orthophoto acquisitions), therefore we could also identify features of
the glacier morphology, such as crevasses and seracs, thus allowing a
more uniform GCP distribution on the scene. For the WIDE images, we
recognized features only on the stable bedrock surrounding the entire
glacier (Fig. 5). The geographical coordinates were extracted from the
orthophoto and the DEM acquired during the 2014 LiDAR survey.

We performed the image orthorectification using the open-source
Matlab™ toolbox, ImGRAFT (Messerli and Grinsted, 2015); the algo-
rithm estimates the camera parameters in order to minimize the
squared projection error of the GCPs.

Eventually, the transformation matrix was applied to the
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displacement maps obtained during the ICC processing and then the
motion expressed in pixel was converted to metric units. To attain that,
we computed the ground sampling distance (GSD) projected on the
plane orthogonal to the LOS.

GSD D
S f

R
2 ·tan atan

( /2 )
= ⎛

⎝
⎞
⎠ (4)

where D, S, R and f are respectively the target distance, the sensor size,
the images resolution (in px) and the focal length of the optical system.

According to Eq. (4), the GSD increased linearly with the distance
and it varied across the images with values ranging between approxi-
mately 5.0–5.9 cm and 12.4–14.5 cm for the ZOOM and WIDE images
respectively. Hence, considering that the tiles of the motion map had a
side of 64-px, the mean tile sizes were roughly 3.5-m side and 8.7-m
side respectively for the TELE and WIDE data. At each tile was asso-
ciated a single value of surface motion.

We remark that the GSD computation in Eq. (4) corresponds to the
pixel footprint on a plane orthogonal to the LOS and that the only
variable is the distance D, while the other terms are fixed parameters.
Therefore, the pixel-to-metric conversion (often called scaling) is rather
insensitive to the possible morphological changes of the surface, be-
cause the distance change is likely to be negligible w.r.t. D; e.g., a
hypothetical distance variation of 10m would yield a relative error of
0.2%. By contrast, the estimate of the adjusted GSD in accordance with
the incident angle of the optical ray on the surface is subjected to sig-
nificant errors when dealing with not updated DEMs or in situations
that involve high morphology change (Gabrieli et al., 2016; Messerli
and Grinsted, 2015; Travelletti et al., 2012).

3.3.2. Interferometric data
For what concerns the georeferencing of the radar data, a common

procedure consists in identifying on the radar maps a set of artificial
GCPs with known coordinates, such as passive (Marambio et al., 2009)
or active (Lingua et al., 2008) corner reflectors (CRs), in order to esti-
mate the unknown transformation parameters and then interpolate on
the DEM with the least squared method. We propose a different solution
that can be adopted in cases where neither the installation of artificial
CRs nor the identification of high reflective areas with known co-
ordinates are feasible, a situation quite occurring when monitoring
inaccessible areas.

Let first describe the characteristics of the radar maps, whose
Cartesian coordinates are x r α y r α( cos , sin )= =∗ , where α is the azi-
muth angle and r is the range. Actually, given the vertical aperture of
the radar beam and the elevation angle of the LOS that can be non-null,
y∗ is the curvilinear surface y y z2 2= +∗ , where z is the height of the
target w.r.t. the radar position and y is the horizontal projection of y∗.
Therefore, y and z must be determined for correctly georeferencing the
radar data in a 3D space.

The surface in geographic coordinates f X Y Z( , ) =∗ is know, where
Y ∗ is the equivalent of y∗; f it is well defined as X and Y ∗ are linearly
independent. Hence, it is possible to estimate z with Natural Neighbour
Interpolation (Sibson, 1981) by evaluating f x y z( , ) =∗ ; the y co-
ordinate is estimated consequently with y r x z2 2 2= − − .

The method above can be applied only if the axes origins of CSr and
CSgeo coincide and the respective axis are parallel. Therefore, when this
condition is not fulfilled, it is first necessary to rototranslate the geo-
graphical coordinates according to the angle ψ included between the
radar LOS and the geographic north.

In optimal contexts, ψ can be estimated by measuring the co-
ordinates of the radar edges by means of GPSs. We propose an alter-
native method that is suited in situations where accurate GPS mea-
surements are not available and ψis only approximately assessed or
even unknown; moreover, we will explain that the uncertainties are
comparable to the GPS-based method, or even lower especially for long
range measurements.

Let consider the optical viewshed (OV) (i.e., the visible geographical
area) from the radar position that can easily computed from the DEM
(Messerli and Grinsted, 2015), actually it corresponds with the area
illuminated by the radar microwave bundle. The areas visible by the
radar return a high amplitude backscattered signal (Tapete et al.,
2013); therefore, the “radar viewshed” (RV) can be estimated as the
areas on the radar maps with the mean amplitude greater than an
empirical threshold (Fig. 6). The amplitude is expressed in dB w.r.t. the
environmental noise.

Consequently, the OV and RV differ mainly for the map resolution
where they are projected. The method we developed for estimating ψ
consists in varying the value of ψ within a cycle whose each iterate is
composed by three steps: (i) first, the DEM coordinates are roto-
translated according with the current value of ψ (being x y z( , , )r r r the
GBSAR positioning in UTM coordinates)

Fig. 5. WIDE image orthorectified and re-
presented projected onto the DEM. GCPs are re-
ported as red circles. The camera position is
frontal to the western tongue (green arrow), thus
the vertical motion component prevails.
Conversely, the eastern tongue (yellow arrow)
flows diagonally w.r.t. the LOS. A ridge of bed-
rock, highlighted by brown dots, separates the
two tongues.
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(ii) Second, the RV map is interpolated (Natural Neighbour
Interpolation) on the DEM in order to have the RVinterp and OV with the
same uniform spatial resolution.

g x y g X ψ Y ψ ψ( , ) RV ( ( ), '( )) RV ( )'
interp= ↦ =∗ ∗ (6)

(iii) Third, we compute the spatial correlation between the
ψRV ( )interp and OV maps.

ρ corr ψ[OV, RV ( )]interp= (7)

The best estimate of the actual rotation angle is assumed to be the ψ
value that maximizes the correlation coefficient ρ. The procedure to
determine ψ can cease according to a heuristic stopping rule (e.g., small
ρ improvements). Once determined the angle ψ, the correct axes rota-
tion of the geographical coordinates is computed with Eq. (5), in order
to fulfill the condition of having the corresponding axis parallel and the
axes origin coincident w.r.t. the CSr ; thereafter, the radar data and

results are interpolated on the DEM with Eq. (6).
In Fig. 6 we report the maps of OV and RV, highlighting different

possible choices of the amplitude threshold for the correlation assess-
ment.

3.3.3. Data coupling
The last step of the processing concerns the data coupling. The ac-

tual 3D motion vector v v vv [ , , ]x y z
T= is represented into a local right-

handed coordinate system with the following convention: v v,x y are the
horizontal components, respectively rightward and incoming in-
creasing, while vz is the vertical downward-increasing component. With
this convention, vy is mainly provided by the GBSAR measurements,
while v v,x z are mainly provided by the VBS. Therefore, their respective
vectors can be written in their own CSs as

h
h h

h
h

[0, , 0]
[ , 0, ]

y
r T

x
v

z
v T

r

v

=
= (8)

Eq. (8) explicitly expresses that they measure only partial compo-
nents of the actual 3D motion vector. As previously mentioned, if the

Fig. 6. (a) The optical viewshed is depicted in green on the DEM. The solid red line is the visible part of the slope section (black dashed line) from the GBSAR
location. (b) The mountain profile of the selected section is represented (black dashed line) with the visible part in red (solid line). In the lower part is reported the
signal amplitude corresponding to the DEM section. The high amplitude values in correspondence of the visible profile are evident. In the blank part, the amplitude
was not processed. (c) Maps of optical viewshed and (d) mean amplitude map of the radar backscattered signal; the different empirical thresholds adopted to estimate
the viewshed correlation are depicted.
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radar and photographic data lie within a space where the corresponding
axis are parallel, the three components are mutual perpendicular, thus
they represent directly the three components of v . On the other hand,
when this condition is not satisfied, it is necessary to carry out a geo-
metrical transformation in order to rotate one CS and make the corre-
spondent axes parallel; the choice of the CS to be rotated is arbitrary.

It must be considered that in general, when a vector is rotated, all
the three components assume non-null values; but for reconstructing
the 3D motion only the linearly independent (i.e., orthogonal) com-
ponents must be summed.

Therefore, applying the rotation matrix R to a generic motion vector
h, we have

R h h hh h [ , , ]x y z
T' ' ' '= = (9)

It is worth noting that the components measured by each device
correspond to the actual components of v in their own CS; i.e., in the
CSv: v hx x= and v h ,z z= while in the CS v h:r y y= . Therefore, if it ro-
tated CSr , the component v hy y

r '= , while the other two components of
h 'r are not considered to reconstruct v because their contribution is
already present in hx

v and hz
v. Thus, in CSv the motion vector is

h h hv [ , , ]x
v

y
r

z
v T'= . Following the same principle, if the CSv was rotated,

in the CSr we would have h h hv [ ', , ']x
v

y
r

z
v T= . Finally, once that the three

motion components are obtained in a generic CS, v can be reported in
CSgeo adopting Eq. (9). Fig. 7 shows a scheme of the rotation in the
specific case where the radar vector is transformed in CSv.

In principle, a rotation in three dimensions is fulfilled around a
reference axis, whose versor does not change during the transformation.
In practice, the reference axis is usually unknown and it is necessary to
operate a sequence of elemental rotations around the three canonical
axes, conventionally corresponding to the geographical axes (Cai et al.,
2011).

This solution has the advantage that, being the data georeferenced,
the angles ψ θ ϕ( , , ) are known for every points within the interested
areas, where ψ is the angle included between the LOS and the geo-
graphical north, θ is the LOS elevation w.r.t. the horizontal plane and ϕ
is the rotation of the x-axis w.r.t. the horizontal plane, which is usually
assumed zero. Therefore, Eq. (9) is applied to the motion vectors of
each single georeferenced point, according with the corresponding
known angles, therefore, R is a combination of elemental rotations in
three dimensions.

It is worth noting that the application of a sequence of rotations

around different axes is not commutative in three dimensions. To
evaluate the unique sequence of rotations, we can consider ψ θ ϕ( , , ) as
the Euler angles yaw, pitch and roll. With the present axes convention,
the angle sequence for rotating the local CS in the CSgeo is known, i.e.,
(i) rotation around the y-axis of the roll angle ϕ, (ii) rotation around the
x-axis of the pitch angle θ, and (iii) rotation around the z-axis of the yaw
angle ψ (Cai et al., 2011) (Fig. 8).

Therefore, the transformation introduced in Eq. (9) is explicitly
expressed as the composite rotation given by the matrix multiply of six
elemental rotations expressed by the following formula

R R R R R R Rψ θ ϕ ϕ θ ψh h h( ) ( ) ( ) ( ) ( ) ( )y r x r z r z v x v y v= = ′ (10)

where R indicates the rotation axis, and ψ θ ϕ( , , ) are the Euler angles
of the two CSs. That is, h is initially rotated from the first local CS in
CSgeo and subsequently is transformed from CSgeo to the second local CS
applying the inverse sequence of Euler rotations. We remind that the
sign of the rotation angles for a right-handed coordinate system is po-
sitive for clockwise rotations and negative for counter-clockwise rota-
tions.

4. Sources of error

The uncertainties that affected the results of our work mainly ori-
ginated from two sources: (i) data processing and (ii) georeferencing.

To the former group belong the errors of the motion measurement
carried out by the two single devices (i.e., VBS or GBSAR). We eval-
uated the measurement uncertainties by investigating the cumulative
motion observed in selected areas corresponding to stable surfaces, i.e.,
bedrock (Dematteis et al., 2017). Since we expected a null cumulative
motion, we associated the average cumulative motion to the measure-
ment accuracy, while its variability, estimated as the mean absolute
deviation (MAD), was associated to the precision. The results of the
error analysis are presented in Table 2. Because the results of the ICC
methods are expressed in pixel units, we converted the values in metric
displacement, adopting an approximate GSD of 5.5 cm and 13.6 cm for
the TELE and WIDE modules respectively (i.e., the GSD corresponding
to the glacier average distance).

From the error analysis emerged that the performances of the ICC
were comparable with those obtained in previous studies (Ahn and Box,
2010; Schwalbe and Maas, 2017; Travelletti et al., 2012). The slightly

Fig. 7. Scheme of the vector transformation in the specific case in which the
velocity vector measured by the radar is rotated in the coordinate system of the
VBS. The components v v,x z measured by the VBS are represented in magenta
and the respective axes X Z,v v orthogonal to the LOS (yellow dashed line) of the
VBS are in yellow. The green arrow depicts the component vy measured by the
GBSAR; the Yr axis of the CSr is colored in white and it coincides with the LOS of
the GBSAR. The blue arrows indicate the components v v v, ,x y z

' ' ' formed by the
decomposition of vx when it is rotated in CSv. The actual velocity vector
V v v v[ , , ]x y z

'= is drawn in red. The white and yellow squares are the locations of
the GBSAR and VBS respectively.

Fig. 8. Euler angles yaw, pitch and roll (ψ θ ϕ, , ) between a generic coordinate
system CS X Y Z( , , )' ' ' ' and the canonical axes corresponding to the geographic
coordinate system CS X Y Z( , , )geo . The red and blue planes are the horizontal
planes (X’Y’, XY) of the C S′ ′ and CSgeo respectively. The sequence of the rotation
angles to make coincide the CS′ with CSgeo is: ( Ri ϕ) ( ),y ( Rii θ) ( ),x ( Riii ψ) ( )z . The
inverse rotation order transform the CSgeo in CS′.
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worse precision of the GBSAR measurements can be ascribed to un-
resolved unwrapping errors. However, the relative precision is of the
order of less than 1% of the maximum cumulative motion.

The second major error source belongs to the georeferencing un-
certainty. For what concerns the image orthorectification, we carried
out a 1000-iterations Monte Carlo simulation, randomly dividing the
selected GCPs in two sets composed by one-half of the GCPs. With the
former one, we calibrated the image orthorectification, while with the
other group we estimated the mean absolute error (MAE) between the
original location of the GCPs and the projected position that minimizes
the squared error during the camera parameter bundle adjustment
(Travelletti et al., 2012). We obtained mean MAEs of 21 px and 12.5 px
for the TELE and WIDE images respectively. Using the whole set of
GCPs we had MAEs of 18 px and 12.4 px. Converting these values in
metric units, we obtained a georeferencing error of approximately
0.99m and 1.69m (TELE and WIDE images respectively); similar un-
certainties were obtained by (Liu et al., 2007). Finer results can be
achieved by measuring the GCP coordinates with GPSs systems
(Messerli and Grinsted, 2015) or performing multi-views photographic
acquisition (e.g., stereoscopy, SFM) (Piermattei et al., 2016).

The radar data georeferencing was attained with the procedure
described in Section 3.3.2. The method is based on the considerations
that the RV and OV coincide and that the RV corresponds to the areas
with high amplitude scattered signal. Both assumptions are strongly
plausible, but the correspondence between RV and signal amplitude
might suffer the arbitrary choice of the empirical amplitude threshold
defined to detect the visible areas. In Fig. 9, we show the correlation
coefficients computed between the OV and RV w.r.t. different rotation
angles and thresholds (Fig. 6d depicts the areas on the DEM corre-
sponding of different amplitude thresholds); it emerged that the pro-
posed method is quite insensitive to the choice of the amplitude
threshold. In fact, all the ψ estimates that maximized the correlation
coefficient ρ obtained with different amplitude thresholds, lay within a
range of 0.1± °. Therefore, we judged the best estimate, ψ , the angle
that provided the absolute maximum value of ρ (i.e.,
ψ 24.35 0.1= ° ± °). A rotation angle change of 0.1± ° is equivalent to an
azimuth uncertainty of 4.36± m at a distance of 2500m, while the
range uncertainty is negligible.

We compared the precision and accuracy of the proposed method
with the rotation angle assessment through the measurement of the
radar edges coordinates. With the aid of GPSs, we carried out the
measurements of the positions of two couples of points on the GBSAR
rail, and consequently we derived the orientation of the instrument. The
obtained estimates of ψ are reported in Table 3 together with the cor-
responding uncertainty being the error ranging between 0.5 and 1 cm of
each horizontal coordinate of the GPSs measurements.

From that comparison, it emerged that the value of the rotation
angle evaluated with the correlation method is approximately the same
resulting from the GPSs method, but in the latter case the uncertainty
was approximately seven times greater. The geometric schemes of the
two methods are different, and the measurement of the edge posi-
tioning with GPSs can amplify the error of the measurement. However,

presently, to our knowledge, this is the common method used to esti-
mate the orientation angle from remote. We proposed an alternative
approach that can reduce the uncertainties of the georeferencing.

In Table 4 we summarize the values of the map resolutions of the
different systems and the corresponding georeferencing errors. All the
values were of comparable size of the order of a few metres; therefore,
we considered the georeferencing uncertainties adequate for the data
coupling.

5. Results

In this section, we report the results obtained by the single remote
sensing devices, i.e., the VBS and the GBSAR; these data represent
partial components of the surface motion. The actual 3-dimensional

Table 2
Estimates of measurement accuracy and precision. The accuracy is computed as
the mean cumulative motion on stable areas, while the precision is the mean
absolute deviation. The values are computed on the 24 days-cumulative motion.
H, V stand for horizontal and vertical directions respectively, for the TELE and
WIDE images.

Accuracy (cm) Precision (cm)

TELE H −0.23 0.78
TELE V 0.45 0.89
WIDE H −0.72 1.62
WIDE V −0.02 0.58
GBSAR −1.37 4.56

Fig. 9. Curves of normalized correlation coefficient between the visual and
radar viewsheds vs. the rotation angle of the visual viewshed. The radar
viewsheds were estimated adopting different thresholds of the mean amplitude
signal in dB.

Table 3
Rotation angles and corresponding uncertainties. GPS1 and GPS2 stand for the
two measurements performed with the GPSs to estimate the rotation angle,
GPSmean is the average of the two values. AngCorr indicates the angle as-
sessment obtained with the correlation between radar and visual viewsheds.

θ Metric uncertainty

GPS1 24.70 0.3° ± ° 13.35m (azimuth) @2500m
GPS2 24.22 0.7° ± ° 29.93m (azimuth) @2500m
GPSmean 24.46 0.75° ± ° 32.77m (azimuth) @2500m
AngCorr 24.35 0.1° ± ° 4.36m (azimuth) @2500m

Table 4
Map resolutions and uncertainties at the average distances sensor-to-glacier; i.e.
2500m the GBSAR and 3800m the VBS. The photographic images have the
same resolution and uncertainty values in azimuth and range. The GBSAR range
error is negligible.

Azimuth
resolution (m)

Azimuth
uncertainty (m)

Range
resolution (m)

Range
uncertainty (m)

VBS tele 3.51 0.99 3.51 0.99
VBS wide 8.65 1.68 8.65 1.68
GBSAR 11 4.36 0.43 –
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kinematics is achieved by the coupling of the two single results, and it is
shown below.

In Fig. 10, we present the horizontal and vertical components of the
velocity of the WIDE images, as they are obtained by the ICC proces-
sing; the raw results of the ICC are expressed in px/day because the
metric conversion is possible only after the image orthorectification.

Fig. 11 depicts the mean daily motion measured by the GBSAR (in
rad/day). It is evident the difference of the data representations be-
tween the two processing methods.

The actual 3-dimensional surface kinematics was produced by the
coupling of the visual and interferometric data. Fig. 12 shows the daily
velocity map projected on the orthophoto. The colours of motion field
represent the module of the velocity, while the arrows indicate the
direction and versus; the arrow length is proportional to the module.

The 3D results can be achieved only in the areas visible by both the
devices. Therefore, the blank areas correspond to the points in shade
from the perspective of the devices; in particular, due to its location the
GBSAR had a limited view of the eastern tongue. Note that the 3D
motion is mostly influenced by the vz and vy components that show a
similar pattern; vx is almost irrelevant for it has quite low values.

The velocity field was estimated with a daily frequency allowing the
precise observation of the evolution of the actual surface kinematics.
That offered the opportunity to identify the occurrence of short-term
phenomena; i.e., we registered a deceleration in the last period of the
survey.

The knowledge of the three velocity components allowed analyzing
in detail the behaviour (e.g., the motion direction) of particular areas of
interest. Interestingly, we observed that the motion vector was not
uniformly parallel to the local glacier surface; on the contrary, in the
steepest areas the vy component was dominant, while vzwas more re-
levant in the gentler parts. Usually, if a recent DEM is available, the 3D
motion is estimated by adjusting the 1D or 2D measurements according
to the local slope (Gabrieli et al., 2016; Giordan et al., 2016; Huang and
Li, 2011; Luzi et al., 2007). Though, as we proved, this assumption
might be misleading in particular cases.

Fig. 10. Upper image: map of the horizontal component of the velocity ob-
tained by ICC of the WIDE images; positive values represent rightward motion,
while negative represent leftward movement. Lower image: map of the vertical
component of the velocity obtained by ICC of the WIDE images. A dashed line
surrounds the lower portion of the glacier (i.e., the investigated part).

Fig. 11. Map of the velocity component parallel to the LOS, obtained by radar interferometry. Positive values represent incoming motion, while negative values
represent motion going away. A dashed line surrounds the glacier; the grey areas indicate the bedrock.
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In the present situation, the surface displacements were not parallel
to the local slope probably because the vertical areas corresponded to
single ice bodies (e.g., seracs and ice block faces) that slid according
with the entire glacier body along the global valley slope. Whereas, in
the flatter regions, the surface deformations (i.e., ice creeping) are a
relevant component of the motion, thus the vertical component is
dominant. The same phenomena might be valid also in situations where
the investigated surface is characterized by the presence of prominent
volumes moving as single bodies (e.g., icefalls, deep gravitational de-
formations or toppling-affected areas).

6. Conclusions

In this paper, we presented an innovative methodology that couples
the partial measurements of the surface kinematics obtained through
terrestrial radar interferometry (TRI) and image cross-correlation (ICC)
as they can detect complementary motion components.

The technique we developed allows at estimating the spatio-tem-
poral evolution (daily frequency) of the actual 3-dimensional surface
kinematics, providing module, direction and versus of the motion field.
It is possible to employ it purely from remote from medium range (i.e.,
a few thousand metres). Therefore, that approach is particularly suited
in situations where the access to the investigated area is difficult or
hazardous. Moreover, the method can be applied either when the two
remote sensing instruments are placed in coincident or different loca-
tions. That feature lends our approach a flexible logistic.

The major issue concerns the data georeferencing, which is ac-
complished with the support of a DEM. The visual images are orthor-
ectified through bundle adjustment using a set of ground control points
(GCPs) manually selected on the scene. The orthorectification process
also provides the metric scaling of the data. A relevant characteristic of
the general method is that the data merging is quite insensitive to
possible morphological changes of the surface, mainly because the
pixel-to-metric conversion depends only on the sensor-to-target dis-
tance, whose variation is negligible.

We propose a new approach to georeference the radar data purely
from remote. The idea consists in estimating the unknown transfor-
mation parameter (i.e., the rotation angle) that maximize the spatial

correlation between the optical and the radar viewsheds; the radar
viewshed is evaluated form the analysis of the amplitude of the back-
scattered signal. Once the data are georeferenced, the orthogonal
components of the motion are summed.

We applied the technique to the dataset collected during a survey
campaign of the Planpincieux glacier, in the Italian side of the Mont
Blanc massif, carried out on 4–27 September 2015.

We acquired the data with a ground-based synthetic aperture radar
(GBSAR) and a monoscopic visual-based system (VBS). The measure-
ments of the cumulative motion with both the instruments revealed
millimeter accuracy and precision. The georeferencing uncertainty was
estimated in a few metres; that is comparable with the resolution of the
maps of the results. Therefore, we judged the georeferencing method
satisfying for the data coupling.

Besides the georeferencing error, the main limitations of the method
are those related to the single remote sensing system; e.g., the ICC
method requires the manual selection of the images to be processed, it
works only during suited visibility conditions, and it suffers the
shadow-light effects. The terrestrial radar interferometry drawback is
primarily connected to the high financial costs and the relatively lim-
ited portability of the instrumentation.
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