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 ABSTRACT  

 

UNRAVELING SHORT-TERM VARIATIONS IN TIDEWATER GLACIER FLOW: 

INSIGHTS FROM TERRESTRIAL RADAR INTERFEROMETRIC STUDIES 

By 

Ryan K. Cassotto 

University of New Hampshire, December 2017 

 

Tidewater glaciers are fast-flowing valley glaciers that advect ice from the interior of ice sheets to 

the ocean. Processes along the submarine boundaries of tidewater glacier termini can trigger a 

dynamic response in glacier ice that can impact stability along the terminus. Predictions of 21st 

century sea level rise require a comprehensive understanding of tidewater glacier dynamics over a 

variety of spatial and temporal scales. Perturbations to the calving front, such as iceberg calving, 

tidal modulations, changes in proglacial ice mélange strength and rigidity, and the subglacial 

discharge of meltwater occur on time-scales that exceed temporal resolution of satellite 

measurements; thus, little is known about the dynamic response of glaciers to these processes. 

Terrestrial radar interferometry is a relatively new technology that measures millimeter scale 

surface deformation with a spatial resolution comparable to satellites, but at much higher temporal 

resolution. Here, I use terrestrial radar interferometers to measure short-term variations in speed 

and surface elevation along Jakobshavn Isbræ, Greenland and Columbia Glacier, Alaska. I find 
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that small calving events can trigger large, dynamic changes in speed and ice thickness. I present 

observations that show that glacier response to calving events is a consequence of two competing 

feedbacks: (1) an increase in strain rates leads to dynamic thinning and faster flow, thereby 

promoting destabilization, whereas (2) an increase in flow rates advects thick ice toward the 

terminus and promotes restabilization. The competition between these feedbacks depends on 

temporal and spatial variations in the glacier’s proximity to flotation. I also present the first field 

evidence of a granular ice mélange influence on iceberg calving, which has implications for 

calving rates, the speed and thickness of the terminus, and consequently tidewater glacier stability. 

Finally, I present observations of a large increase in speed along Columbia Glacier in response to 

a precipitation event.  The results demonstrate the importance that variations in basal hydrology 

have on sliding along the bed, and more importantly how changes in the subglacial hydrology can 

affect the response of a tidewater glacier to tidal fluctuations.  
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1 INTRODUCTION 

Dynamic processes along the termini of tidewater glaciers, fast-flowing glaciers that transport ice 

from the interior of ice sheets to the ocean, can account for more than half of all ice mass loss in 

Greenland and Antarctica. In the early 2000s, changes that initiated along Greenland’s ice-ocean 

boundary triggered feedbacks in ice dynamics that led to large calving retreats and significant ice 

mass loss. The changes are ongoing, but predictions for tidewater glacier evolution and the impacts 

to sea level are limited by a poor understanding of tidewater glacier response to perturbations at 

the calving front. This dearth of knowledge is due, in part, to an inability to adequately measure 

rapid, dynamic processes with high temporal and spatial resolution. As a result, several major 

questions remain unanswered, including: (1) How does iceberg calving affect tidewater glacier 

stability? (2) What effect does ice mélange have on iceberg calving, if any? (3) How do variations 

in subglacial hydrology and discharge affect speed? and (4) How do variations in ocean and fjord 

circulation impact frontal ablation? Understanding tidewater glacier response to these 

perturbations, including the effect of short-term velocity variations on tidewater glacier stability, 

is paramount for predictions of 21st century sea level rise. Recent advances in terrestrial radar 

interferometers, instruments that measure surface deformation using fractional changes in 

electromagnetic wavelengths (phase differences) between acquisitions, allow for these short-

period processes to be observed with high temporal and spatial resolution, and thus has motivated 

the research presented here.  
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 2 

Historically, the study of tidewater glacier flow began in earnest in the 1970s with the 

conceptualization of the tidewater glacier cycle [Post, 1975].  Post hypothesized that tidewater 

glaciers 1) advance over millennial time scales, 2) reach an advanced position by building and 

mobilizing a protective moraine at the glacier terminus, 3) undergo rapid retreat on centennial time 

scales, and then 4) remain at the head of fjord until the cycle repeats. Seminal work by Meier and 

Post [1987] described the unique geophysical environment of tidewater glaciers that contributes 

to their fast flow. Specifically, submarine beds and high seawater pressures lead to 

characteristically high subglacial water pressures at the terminus, which are necessary to drive 

basal melt water from the system. Consequently, this enhances basal sliding and thus speeds along 

tidewater glacier termini. Another attribute of their work was the idea that tidewater glaciers are 

largely insensitive to climate variations, owing to complex fjord geometries, the distribution of 

mass balance, and the accumulation of eroding sediments. That view has changed in recent years 

to reflect a rather complex relationship between climate and tidewater glaciers [Post et al., 2011], 

wherein tidewater glacier sensitivity to climate varies at each stage of the cycle, and is most 

sensitive when the terminus is in an advanced configuration [Amundson, 2016]. Furthermore, 

recent, concurrent changes along many of the planet’s tidewater glaciers suggest a climate-induced 

trigger for rapid retreat.  

 

Many recent studies have documented rapid changes throughout the cryosphere that implicate a 

changing climate. For example, increased surface melt [e.g. Nghiem et al [2012]] and the drainage 

of supraglacial lakes [Das et al., 2008] have been shown to accelerate speeds along the margin of 

the Greenland Ice Sheet. An increase in subglacial discharge, coupled with warm ocean currents 

that reach the termini of tidewater glaciers [Holland et al., 2008; Rignot et al., 2010; Straneo et 
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 3 

al., 2010; Rignot et al., 2013b], can create convective freshwater plumes that ablate the submarine 

fronts of tidewater glaciers [Motyka et al., 2003], which in some cases surpass the calving flux 

[Bartholomaus et al., 2013]. These climate-induced changes can initiate positive feedbacks within 

ice dynamics that lead to tidewater glacier thinning [Pritchard et al., 2009], faster flow [Joughin 

et al., 2010], and rapid retreat [Moon and Joughin, 2008] that continue regardless of climate 

variations [Amundson, 2016; Brinkerhoff et al., 2017]. The ability to predict the evolution of 

tidewater glacier retreat is contingent upon the ability to study and analyze dynamic processes 

along the terminus. However, these processes - subglacial discharge, iceberg calving, and 

variations in speed, all occur on spatial and temporal scales that exceed the sampling capabilities 

of traditional survey techniques.  

 

Early traditional glaciological studies used theodolite and photogrammetric surveys to measure 

speed. Active seismic campaigns were used to measure ice thickness and the depths of submarine 

beds (e.g. Clarke and Echelmeyer [1996]). Drilling expeditions measured ice thickness as well as 

subglacial [Meier et al., 1994] and englacial conditions [Luthi et al., 2002]. These and numerous 

other studies that characterize glacier flow provided the framework for modern glaciology.  

 

Technological advances have revolutionized glaciological observations and understanding. For 

example, GPS technology has increased temporal sampling rates. Airborne radar sensors sample 

bed depths and derive ice thicknesses that are combined with fundamental conservation principles 

to derive topographic maps of glacier beds (e.g.[Bamber et al., 2000a; 2000b; Morlighem et al., 

2014]). The launch of multiple Earth observing satellites has significantly enhanced the spatial 

resolution of observations. The application of spaceborne radar interferometry allows for fine scale 
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 4 

surface deformation measurements over relatively moderate time scales (weekly to monthly).  

However, the challenge for tidewater glaciers is to monitor changes with high spatial and temporal 

(sub-daily) resolution – a technological barrier that, until recently, was not possible to cross.  

 

Terrestrial-based radar interferometry was developed more than a decade ago but was limited to 

the mining and landslide communities. Terrestrial radar interferometers (TRIs) have distinct 

advantages over spaceborne counterparts, including the ability to deploy and observe areas not 

viewable by satellites. Their stationary observation position also simplifies post-processing 

calculations by reducing the number of measured phase displacement components. Perhaps most 

significant is the high sampling rate (minutes), creating an instrument capable of satellite spatial 

resolution but with the temporal resolution close to GPS systems. As a result, rapidly deforming 

surfaces that temporally decorrelate between satellite acquisitions can be observed with TRI (e.g. 

iceberg calving, ice mélange, rapid dynamic thinning). Recently, TRIs have been deployed to 

characterize flow along tidewater glacier termini [Dixon et al., 2012; Voytenko et al, 2015a; 

2015b; 2015c; Xie et al., 2016]. Here, I use dense TRI observations to create high-resolution time-

series of short-term variations in speed and surface elevation along tidewater glaciers in Greenland 

and Alaska. In particular, I present a novel approach to DEM differencing whereby I use stationary 

targets in TRI-derived digital elevation models (DEMs) to reduce elevation errors and produce a 

record of rapid, dynamic thinning (Chapter 2, methods). The results presented herein demonstrate 

how TRI studies can enhance our understanding of short-term tidewater glacier dynamics, and 

when coupled with longer records from satellites, can be used to make predictions about the 

evolution of tidewater glaciers.   
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The focus of this thesis is to apply TRI technology to investigate the response of short-term 

perturbations along the termini of two glaciologically significant tidewater glaciers.  Since 2000, 

Jakobshavn Isbræ in West Greenland has retreated ~20km, thinned by more than 100 m [Motyka 

et al., 2011], and discharged more ice than any other Greenland glacier [Enderlin et al., 2014], 

which has contributed to a dense proglacial ice mélange.  Columbia Glacier in South-Central 

Alaska has also endured a nearly 40-year, 22 km retreat [McNabb and Hock, 2014], experienced 

a >50% reduction in ice volume [McNabb et al., 2012], and is currently exhibiting very low speeds 

in late fall. Both glaciers occupy submarine beds, which suggests additional retreat is possible.  In 

the following chapters, we investigate short-term variations in glacier flow in response to: iceberg 

calving (chapter 2) and precipitation (chapter 4), and short-term variations in ice mélange flow 

between calving events (chapter 3).  
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2 NONLINEAR GLACIER RESPONSE TO CALVING EVENTS, 
JAKOBSHAVN ISBRÆ, GREENLAND  

 

2.1 Introduction	

After decades of relative stability [Sohn et al., 1998; Podlech and Weidick, 2004], Jakobshavn 

Isbræ began to destabilize at the turn of the 21st century. Submarine melting of the floating tongue 

[Motyka et al., 2011], enhanced by the influx of warm ocean currents in the late 1990s [Holland 

et al., 2008], initiated changes along the glacier terminus. The glacier thinned by more than 100 m 

[Krabill et al., 2004; Motyka et al., 2010], velocities doubled [Joughin et al., 2004; Luckman and 

Murray, 2005], and the terminus rapidly retreated [Podlech and Weidick, 2004; Moon and Joughin, 

2008]. The rate of retreat peaked in 2003 with the collapse of the glacier’s floating tongue [Thomas, 

2004; Joughin et al., 2012], and the retreat continues to this day. The pattern of accelerating flow 

and kilometer-scale retreat slowed in 2010 and 2011, but speeds reached record high values in 

2012 as the glacier retreated to a new minimum position [Joughin et al., 2014].  

Retreat down a reverse bed slope is believed to have triggered the large increase in speed that 

occurred in 2012 [Joughin et al., 2014]. Measurements and numerous bed models show a 

submarine channel extends far into the interior of the ice sheet [Clarke and Echelmeyer, 1996; 

Bamber et al., 2013; Morlighem et al., 2014]; however, the depth of the channel varies by model. 

Understanding Jakobshavn Isbræ’s response to perturbations along the calving front, including 

bathymetric influence, is paramount for accurate predictions of tidewater glacier evolution and the 

resultant impact on sea level.  
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Variations in ice thickness affect tidewater glacier stability through changes in effective pressure 

(ice overburden minus subglacial water pressure). A reduction in ice overburden decreases basal 

friction and enhances flow, creating a positive feedback that propagates upglacier and leads to 

rapid retreat [Pfeffer, 2007].  The recent 15 m yr-1 thinning rate [Joughin et al., 2012], 20 year 

period of fast flow [Joughin et al., 2012; 2014] and ongoing retreat [Moon and Joughin, 2008; 

Cassotto et al., 2015] indicate that positive feedbacks are driving Jakobshavn Isbræ’s instability. 

If sustained, the glacier could retreat far into the ice sheet interior within a few decades [Joughin 

et al., 2014]. Furthermore, proglacial studies show that the ice sheet margin around Jakobshavn 

Isbræ has previously responded to terminus variations on centennial time scales [Briner et al., 

2011; Young et al., 2011]. Therefore, the continued destabilization of Jakobshavn Isbræ could have 

profound effects on the drawdown of interior ice, and by direct consequence, sea level rise over 

the next century.  

On shorter time-scales, brief periods of acceleration can influence the seasonal and interannual 

behavior of Jakobshavn Isbræ [Podrasky et al., 2012]. Here, we use terrestrial radar interferometry 

(TRI) to assess the influence that short-term perturbations in speed have on long-term glacier 

dynamics. TRI is a relatively new tool, wherein phase differences between multiple radar passes 

are used to derive surface deformation and digital elevation models. The portability and high 

sampling rates of TRI provide tremendous opportunities for geophysical surface studies (e.g. 

Caduff et al., [2014] and references therein), including tidewater glaciers [Dixon et al., 2012; 

Voytenko et al., 2015b; Xie et al., 2016]. TRI data collected at Jakobshavn Isbræ in 2012 has 

already been used to characterize ice mélange motion during calving events [Peters et al., 2015] 

and towards the development of a 2D velocity field [Voytenko et al., 2017]. The objective of this 

study is to use the full, high-resolution record of TRI observations to evaluate how short-term 
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