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Abstract: The benefits of terrestrial radar interferometry
(TRI) for deformation monitoring are restricted by the in-
fluence of changing meteorological conditions contami-
nating the potentially highly precise measurements with
spurious deformations. This is especially the case when
the measurement setup includes long distances between
instrument and objects of interest and the topography
affecting atmospheric refraction is complex. These situ-
ations are typically encountered with geo-monitoring in
mountainous regions, e.g. with glaciers, landslides or vol-
canoes.

We propose and explain an approach for the mitiga-
tion of atmospheric influences based on the theory of in-
trinsic random functions of order k (IRF-k) generalizing
existing approaches based on ordinary least squares es-
timation of trend functions. This class of random func-
tions retains convenient computational properties allow-
ing for rigorous statistical inference while still permitting
to model stochastic spatial phenomena which are non-
stationary in mean and variance. We explore the corre-
spondence between the properties of the IRF-k and the
properties of the measurement process. In an exemplary
case study, we find that our method reduces the time
needed to obtain reliable estimates of glacial movements
from 12 h down to 0.5 h compared to simple temporal aver-
aging procedures.

Keywords:Atmospheric correction, intrinsic random func-
tions, terrestrial radar interferometry,monitoring in alpine
environment, Geostatistics

*Corresponding author: Jemil Butt, ETH Zürich, Institute of Geodesy
and Photogrammetry, Stefano-Franscini-Platz 5, CH-8093 Zürich,
Switzerland, e-mail: jemil.butt@geod.baug.ethz.ch
Andreas Wieser, ETH Zürich, Institute of Geodesy and
Photogrammetry, Stefano-Franscini-Platz 5, CH-8093 Zürich,
Switzerland, e-mail: andreas.wieser@geod.baug.ethz.ch
Stefan Conzett, Terra Vermessungen AG, Obstgartenstrasse 7,
CH-8006 Zürich, Switzerland, e-mail: conzett@terra.ch

1 Introduction

Terrestrial radar interferometry (TRI) is a technology
providing spatiotemporally dense measurements for the
quantification of geometric surface changes along the line-
of-sight over distances up to a few km. This is not only of
immediate practical interest in applications like structural
health monitoring, operation and safeguarding of open
pit mines or monitoring of rockfalls endangering critical
infrastructure but could also facilitate better understand-
ing of dynamic processes underlying large-scale geologi-
cal natural hazards through scientific measurements.

TRI is therefore regularly deployed inmountainous re-
gions, e.g. to survey glaciers [15], to assess the likelihood
of geologically predisposed areas becoming active land-
slides [4] or to observe the flanks of volcanoes for deforma-
tion patterns indicating an increase in activity [14]. Even
though TRI, as a remote sensing technology, has certain
advantages over classical point-based geodetic techniques
due to its high sensitivity to small surface displacements,
inherently areal sampling and remote operability without
need for any in-situ components, it shares with them some
of their limitations.

Like for any other type of measurement, TRI data con-
sist of a signal part and a noise part. The latter is further
decomposable into a spatiotemporally highly autocorre-
lated component having its origins in the essentially un-
predictablemeteorological changes along the propagation
path, and a second, spatiotemporally uncorrelated, com-
ponent subsuming thermal noise, crosstalk between elec-
tronic circuits and movements of the surveyed object on
very short length- or timescales or in manners otherwise
inaccessible to systematic analysis.

This secondcomponent becomesdirectly visible in the
interferograms at locations corresponding to regions with
weak backscattering. Particularly, it appears in the form
of unsystematic disturbances seemingly adhering to the
restrictive probability laws of white noise and is therefore
easily modeled stochastically and amenable to statistical
standard treatments.

The noise component corresponding to atmospheric
influences is more problematic. In addition to the atmo-
spheric phase screen (APS) reaching magnitudes and spa-
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Figure 1: Two successive 2-minute interferograms, in which the
APSmasks the deformations that are actually limited to the area
outlined in black.

tial extents allowing it to completely mask the underly-
ing signal (see Fig. 1), its stochastic properties also depend
on the topography and are consequently non-constant be-
cause the APS associated with a point t ∈ T (e.g., T = ℝ3)
is the result of an integration of differential atmospheric ef-
fects along the line joining t and the instrument position.
Accordingly, the APS cannot be second order stationary
[5, p. 253], and thus widely known inference methods like
simple Kriging hold no optimality properties [7, p. 352].
This raises the question of stochastically optimal inference
of an instationary APS.

This inference problemhas been approached fromdif-
ferent perspectives. Most of them employ a blend of (i)
deterministic relations between APS, refractive index and
meteorological quantities and (ii) stochastic relations of
the deterministically unmodelled residuals to deduce the
APS from the measurements. A purely deterministic ap-
proachwas investigated in [9], where the authors gathered
meteorological data and predicted the atmospheric phase
delay using tools from weather forecasting. An alternative

to the strictly deterministic viewpoint consists in mixing
a polynomial model for the APS with a multiple regres-
sionmodelmeant to explicitly incorporate the information
from altitude and phase measurements on known stable
points into the coefficients of the polynomial APS [11]. Pre-
supposing less regularity of the APS and placingmore em-
phasis on the structure found in the data leads the authors
of [4] to estimate the APS over the area potentially contain-
ing displacements with a spatial low-pass filter.

It is in recognition of the irregular movement pat-
terns and highly variable meteorological properties of air
in mountainous terrain that we adopt a data-driven view-
point similar to the one proposed in [4]. In section 2 an
interpretation of the APS as an intrinsic random function
will be presented and followed in section 3 by a scheme
allowing rigorous statistical inference for intrinsic random
functions in formofwhat is called the BLIE (Best Linear In-
trinsic Estimator) in the geostatistical literature (see [12]).
Section 4 contains results validating the proposed correc-
tion method in the context of a monitoring campaign tar-
geting an alpine glacier in southern Switzerland.

2 A mathematical model for
the APS

The area potentially containing moving objects will be as-
sumed known. A set of persistent scatterers (PS) lying out-
side of it has to be extracted from the data for later use
as reference points with good backscattering characteris-
tics and signal-to-noise ratio that provide reliable informa-
tion regarding the APS over stable regions. To this end, the
amplitude dispersion index (ADI) described for example
in [13] may be used although care must be taken to elimi-
nate any PS detected in unstable areas. The goal is then to
derive for all locations t ∈ T the least squares estimator
minimizing the expected quadratic error E[(Â(t) − A(t))2]
which represents the deviation between predicted and
true APS, and to quantify the uncertainties associated
with the resulting estimates. Acknowledging the effect of
noise unaccounted for otherwise, we will refrain from em-
ploying a strict interpolation procedure and instead per-
form estimation and smoothing simultaneously using a
coherence-based noise parameter.

The APS itself will be considered a random field

A(⋅) ∶ T ∋ t ↦ A(t) ∈ L2(Ω) (1)

where L2(Ω) denotes theHilbert space of square integrable
random variables on the probability space Ω (see for ex-
ample [7, p. 25]). The above definition is to be interpreted
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as A(⋅) being an assignment of a random variable to each
location t ∈ T. Measurements M(⋅) on the PS will be de-
manded to satisfy

M(⋅) = A(⋅) + N(⋅) (2)

with noise N(⋅) being a zero-mean random field with diag-
onal covariance matrix ΣN and A(⋅) and N(⋅) uncorrelated.
To model drifts in variance and expected value of A(⋅), the
usual regularity assumption of second order stationarity
(s.o.s.) of A(⋅) is dropped and replaced by the weaker [12,
p. 440] assumption ofA(⋅) being an intrinsic random func-
tion of order k (IRF-k).

IRF-k’s can be understood as random functions, for
which a differential operator ∇k+1 of order k + 1 exists,
such that ∇k+1A(⋅) satisfies E[∇k+1A(t)] = 0 ∀t ∈ T and
E[∇k+1A(t)∇k+1A(s)] = C(t−s) ∀s, t ∈ T, whereC ∶ T×T →
ℝ is a covariance function unaffected by any translation
Γt0 ∶ T ∋ s ↦ s+ t0 ∈ T acting jointly on locations s and t:

C(Γt0(s) − Γt0(t)) = C(s + t0 − t − t0) = C(s − t). (3)

As this implies ∇k+1A(⋅) to have translation invariant first
and secondmoment functions, amore succinctwayof stat-
ing A(⋅) to be an IRF-k consists of stating ∇k+1A(⋅) to be
s.o.s.

Direct physical meaning can be attributed to the case
k = 0 as it corresponds to the assumption of ∇A(⋅) be-
ing s.o.s., even though A(⋅) itself, as a sum of atmospheric
phase variations along wave propagation paths of differ-
ent lengths, will exhibit an instationary variance depend-
ing on the distance between instrument and targeted area.
As its variance is not translation invariant, A(⋅) can not be
s.o.s., although the supposition of s.o.s. derivatives of A(⋅)
seems justifiable due to a lack of visible drifts in the vari-
ance of velocities differentiated with respect to the range
direction (see Fig. 2) and will make rigorous inference pos-
sible.

Arguments and definitions will be made more formal
in the following section adhering closely to notations laid
out in [5, pp. 238–270] and loosely to the theory presented
in [12]. A small glossary listing mathematical symbols and
their meaning is supplied at the end of the paper to further
aid the reader.

3 Inference in the space of IRF-k
3.1 Intrinsic random functions

Let δ be the Dirac measure and δt , t ∈ T denote its trans-
late, i.e., δt(T′) = 1 if t ∈ T′ ⊂ T and δt(T′) = 0 otherwise.

Figure 2:Measured displacement velocities and their derivative in
range-direction. The latter seems to be zero-mean with a homoge-
neous correlation function.

Then the discrete measure λ = ∑i λiδti , λi ∈ ℝ freely cho-
sen, acts on a function X ∶ T → U via

Xλ ∶= ∑
i

∫T
λiX(s)δti (ds) = ∑

i
λiX(ti).

IfU is either L2(Ω) orℝ and X therefore a random field or a
normal, scalar function, define the action of λ onX around
t as

Xλ(t) ∶= ∑
i

∫T
λiX(s)δt+ti (ds) = ∑

i
λiX(t + ti). (4)

The space Λk of discrete measures allowable at order k
consists of those λ for which all polynomials Pk ∶ T → ℝ
of degree at most k vanish:

λ ∈ Λk ⇔ ∑
i
λiPk(t + ti) = 0 ∀ t ∈ T

whereby the number of λi is almost arbitrary. This emu-
lates closely polynomials of degree k being in the kernel
of the differential operator of order k + 1. Such Xλ are then
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called allowable linear combinations of order k, or ALC-k
for short. If λ ∈ Λk then polynomial drifts of X(⋅) up to or-
der k in mean and up to order 2k in variance are mapped
to 0 by λ according to

X(t) ∶= Y(t) + Pk(t)
Xλ(t) = Yλ(t) + Pkλ (t)⏟

0 since λ∈Λk

= Yλ(t)

E[X(s)X(t)] ∶= K(s, t)⏟
only function of t−s

+ ∑
i⩽k

Pi(s)f 1i (t)

+ ∑
j⩽k

Pj(t)f 2j (s) + ∑
i,j⩽k

Pi(s)Pj(t)

E[Xλ(s)Xλ(t)] = Kλλ(s, t) + ∑
i⩽k

Piλ(s)f 1i λ(t)

+ ∑
j⩽k

Pjλ(t)f 2j λ(s) + ∑
i,j⩽k

Piλ(s)Pjλ(t)

= Kλλ(s, t)⏟⏟⏟
only function of t−s

where Kλλ(s, t) is understood as a notational extension of
eq. (4) equivalent to

Kλλ(s, t) = ∑
i,j

λiλjK(t + ti, s + sj).

Xλ(t) is therefore free of the influences of those polynomial
drifts and would be stationary if these were the only terms
inciting instationary behavior of X(⋅). If indeed this is the
case and the random field Xλ(⋅) ∶ T ∋ t ↦ Xλ(t) ∈ L2(Ω) is
zero-mean and s.o.s. for λ ∈ Λk:

E[Xλ(t)] = 0 ∀t ∈ T
E[Xλ(s)Xλ(t)] = C(t − s) ∀s, t ∈ T (5)

then X(⋅) is called an IRF-k. The special case k = 0 is again
particularly instructive. If X exhibits a linear trend in vari-
ance as typical for integrated s.o.s. processes [5, p. 253], the
Xλ satisfies the equations E[Xλ] = 0 and E[Xλ(s)Xλ(t)] =
Kλλ(t − s) and is s.o.s. for all λ ∈ Λ0 (e.g. λ the discrete
derivative). Consequently, X is an IRF-0.

For explanatory purposes we will showcase the nec-
essary constructions and the derivation of the BLIE for the
APS A(⋅) in the 1D case only. The extensions required to
handle data in more than one dimension are straightfor-
ward (see [12]) and any non-obvious adjustments to the
procedure – necessary for the application to 2D random
fields in sec. 4 – will only originate from the polar geo-
metrical nature of the measurements. To avoid unneces-
sary clutter of symbols, the linear map Lλ ∶ F ∋ f (⋅) ↦
fλ(⋅) ∈ F, with F some space of functions, will also be de-
noted by λ. No confusion should arise due to the different

meanings of λ as a measure and the linear map that maps
a function f to fλ.

Wewill nowdefine two specificmeasures∇ and∫ that
are inverse to each other in a certain sense to be made ex-
plicit later. In section 3.3 theywill be the basis for a formal-
ization of the idea that differencing in range direction can
make interferograms s.o.s. Let T be a set of pixel indices
now, Ξ the space of all random fields, and

∇ ∶ Ξ ∋ A(⋅) ↦ A∇ = A(⋅) − A(⋅ − 1) ∈ Ξ

∫ ∶ Ξ ∋ A(⋅) ↦ A∫(⋅) =
⋅−a

∑
k=0

A(a + k) ∈ Ξ

where A(⋅) ∶ T ∋ t ↦ A(t) ∈ L2(Ω),T ⊂ ℤ is a discrete (1D)
random field and a is an arbitrary integer constant corre-
sponding to the lower limit of integration. A short calcula-
tion shows

∇ ∫A(⋅) = ∇
(

⋅−a

∑
k=0

A(a + k)
)

(6)

=
⋅−a

∑
k=0

A(a + k) −
⋅−a−1

∑
k=0

A(a + k)

= A(⋅)

∫ ∇A(⋅) = ∫ (A(⋅) − A(⋅ − 1))

=
⋅−a

∑
k=0

A(a + k) − A(a + (k − 1))

= A(⋅) − A(a − 1)

so that ∇ and ∫ are not strictly inverses on Ξ. However,
analogous to integration and differentiation in real anal-
ysis, ∫ ∇ differs from the identity function idΞ only by
A(a−1)which is an element of ker∇ ∶= {X ∈ Ξ ∶ X∇ = 0}
and can be considered as giving rise to the identity on the
quotient space Ξ/ ker∇. By the universal property of quo-
tient spaces [1, p. 89] ∃!∇̄ such that

commutes, that is ∇̄ ∘ πX = ∇X ∀ X ∈ Ξ. Here, as in ̄X, the
overbar is understood to indicate the equivalence class of
X under the relation X ∼ Y ⇔ X − Y ∈ ker∇ and Ξ/ ker∇
is the space of equivalence classes with addition ̄X + ̄Y =
X + Y and scalar multiplication α ̄X = αX, α ∈ ℝ. Since
∇̄ ̄X = ∇X is well defined according to X ∼ Y ⇒ ∇(X−Y) =
0 ⇔ X∇ = Y∇ and by the first isomorphism theorem for
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modules [1, p. 89] Im∇ ≅ Ξ/ ker∇we surmise that ∇̄might
be an isomorphism between Im∇ andΞ/ ker∇. Indeed it is

surjective by ∇̄(Ξ/ ker∇) = ∇̄ ∘ π(Ξ) = Im∇

injective by ̄X ≠ ̄Y ⇒ X − Y ∉ ker∇

⇒ ∇X ≠ ∇Y ⇒ ∇̄ ̄X ≠ ∇̄ ̄Y

and lastly a homomorphism by

∇̄( ̄X + ̄Y) = ∇(X + Y) = ∇̄ ̄X + ∇̄ ̄Y
∇̄(α ̄X) = ∇αX = α∇̄ ̄X.

Furthermore, ∫̄ = π ∘ ∫ ∶ Im∇ → Ξ/ ker∇ serves as a two
sided inverse homomorphism. This means that the follow-
ing diagrams commute.

As of now ∇̄ ∶ Ξ/ ker∇ → Im∇ is identified as an isomor-
phism with inverse ∫̄ ∶ Im∇ → Ξ/ ker∇. This implies in
fact the recapturability of the equivalence class ofA(⋅) from
A∇(⋅), since ̄A(⋅) = ∫A∇(⋅) satisfies ∇̄Ā(⋅) = A∇(⋅) mean-
ing that Ā is the equivalence class of all solutions A(⋅) to
∇A(⋅) = A∇(⋅) with A∇(⋅) given. By exchanging the space
of functions on T × T for Ξ in the quotient space construc-
tions, it is possible to show that equivalence classes ̄σ of
covariance functions are recoverable from C in the same
way equivalence classes ̄A of random functions are from
A∇. They turn out to be not only theminimum requirement
for best linear estimation, but also directly inferrable from
the data by extending the inversion procedure on the quo-
tient space Ξ/ ker∇ to F/ ker∇∇ and applying it to a para-
metric model of C.

3.2 Derivation of the BLIE

The main impediment complicating statistical inference
for instationary random fields is the fact that the covari-
ance function σ depends not only on the difference be-
tweenpixels but also on the location,making it impossible
to infer it from one realization of a random field. However,

it will turn out that for optimal estimation the instation-
ary covariance is in fact not strictly required; the equiva-
lence class of its stationary part, termed generalized co-
variance (GC) in [12], will be sufficient. The GC in turn de-
pends only on the equivalence class of the random field,
enabling reliable estimation in presence of drift in mean
and variance. Since A∇(⋅) can be assumed stationary, the
covariance function of the ALC-0 A∇(⋅)

E [A∇(s)A∇(t)] = σ∇∇(t, s) = C(t − s)

is stationary and can be inferred from the data. Employing
arguments from section 3.1 it can be shown that for ∇1σ =
σ∇δ and ∇2σ = σδ∇ the inverse of ∇2∇1 ∶ F/ ker∇2∇1 →
∇2∇1(F) is π21∫1

∫
2
with F some function space containing

σ and other quantities as defined below.

– π is the natural projection onto the quotient space
– ∇̄ ̄σ = ∇σ; ̄σi equiv. class of σ in F/ ker∇i
– ∇i(F) is space of functions of type ∇iσ, σ ∈ F

Checking that they are inverses is simple:
For C ∈ ∇2∇1(F), ∇1e = d, ∇2d = C

i) ∇2∇1π21 ∫
1

∫
2
C = ∇2∇1π21 ∫

1
(d + q2)

= ∇2∇1π21(e + q1⏟
∈ker∇1

+ ∫
1

q2⏟
∈ker∇2

)

= ∇2∇1 ̄e21 = ∇2∇1e = C
ii) π21 ∫

1
∫
2

∇2∇1 ̄e21 = π21 ∫
1

∫
2

∇2(∇1e)

= π21 ∫
1

∇1e + q2

= π21(e + q1 + ∫
1
q2) = ̄e21

This directly translates to the formula

̄σ21 = π21∫1
∫
2
C (7)

since∇2∇1σ = σ∇∇ = C is known allowing inference not of
the instationary covariance function but only of its equiv-
alence class π21σ. For any λλ ∶ σ ↦ σλλ with ker λλ ⊇
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ker∇2∇1 λλ ∶ F/ ker∇2∇1 ∋ ̄σ21 ↦ σλλ ∈ ∇2∇1(F) is well
defined:

σ1 ∼ σ2 ⇔ σ1 − σ2 ∈ ker∇2∇1 ⊆ ker λλ
⇒ λλ(σ1 − σ2) = 0 ⇔ λλσ1 = λλσ2

Thus for any λ ∈ Λ0, σλλ only depends on the equivalence
class ̄σ21 which can be calculated from the stationary co-
variance C of the first derivatives of A(⋅). We estimate the
atmosphere at t0 ∈ T linearly from nmeasurements:

Â(t0) =
n

∑
j=1

λjM(t0 + sj) = λTM

The error ϵ(t0) = Â(t0) − A(t0) = A ̃ϵ + Nλ with ̃ϵ =
∑n

j=1 λjδsj − δ is an instationary random field. Forcing the
residual term A ̃ϵ to be drift independent and stationary is
equivalent to adding the constraint ̃ϵ ∈ Λ0 effectively con-
straining ̃ϵ to eliminate constant polynomials translating
to the equation ∑n

i=1 λi − 1 = 0. Setting ̄K = π21∫1
∫
2
C and

C = σ∇∇, the error variance can be written as

E[ϵ2] = E[(A ̃ϵ − Nλ)2] A⨿N= E[A2 ̃ϵ] + E[N2
λ ]

= σ ̃ϵ ̃ϵ(t0, t0) + λTΣNλ
̃ϵ∈Λ0
= K ̃ϵ ̃ϵ(t0, t0) + λTΣNλ
= λT (Kij + ΣN )⏟⏟⏟⏟⏟

K

λ − 2λTKt0 + K(t0, t0)

{Kij}kl
= K(t0 + sk , t0 + sl)

{Kt0}k
= K(t0 + sk , t0) k, l = 1, ..., n

Minimizing E[ϵ2] subject to ∑n
j=1 λj − 1 = 0 leads to the

system of equations [2, pp. 84–86]

Kλ + 1−μ = Kt0 (8)

1−
Tλ = 1

where μ is a single Lagrange-multiplier and 1− ∈ ℝn is a
vector of ones. Successive substitution ultimately yields

Â(t0) =
n

∑
j=1

λjM(t0 + sj) (9)

λ = K−1
(Kt0 − 1−(1−

TK−11−)
−1

(1−
TK−1Kt0 − 1)) .

This estimator can be seen to coincide with ordinary Krig-
ing (see [6] for a similar formulation) but with the GC K
instead of the stationary covariance C and an additional
term accounting for the effects of noise. How this formula
is to be adapted for practical application under considera-
tion of coordinate dependent aspects will be discussed in
the next section.

3.3 Geometrical considerations and
practical implementation

Let s ∈ T be a point and let cs = (xs, ys)T and ps = (rs,φs)T

denote Cartesian and polar coordinates of this point, re-
spectively. The coordinate transform given by

ϕ ∶ [0, ∞) × [0, 2π) ∋ ps ↦ cs ∈ ℝ2

ϕ(ps) =
[
rs cos(φs)
rs sin(φs)]

ϕ−1(cs) =
[

√x2s + y2s
atan(ys/xs)]

maps the polar coordinates of a point s to its Cartesian co-
ordinates. If f (⋅) is a function from T to ℝ then f c(⋅) and
f p(⋅) will be the corresponding functions acting on the
Cartesian and polar coordinates satisfying f (s) = f c(cs)
and f (s) = f p(ps). The identity f (s) = f c(cs) = f c(ϕps) im-
plies the transformation laws f c ∘ϕ = f p and f p ∘ϕ−1 = f c.
An analogous statement holds for functions with multi-
ple inputs for which the coordinate transform is applied
to each input separately, e.g.:

σc ∘ (ϕ,ϕ) = σp

σc = σp ∘ (ϕ−1,ϕ−1)

Following the line of argumentation outlined in section 2,
the derivative of the APS A(⋅) in line-of-sight may be re-
garded as s.o.s. It will be numerically approximated by the
discrete derivative of A(⋅) in range direction. Introducing
the measure ∇ as below, A∇(⋅) ≈ (𝜕/𝜕r)A(⋅) and a linear
map ∫ can be found such that the relation between ∇ and
∫ closely resembles that of ∇ and ∫ as defined in the 1D
case in section 3.1.

Note, however, that apart from the errors introduced
by discretization, further sources of uncertainty exist:
1. The derivative in range direction is used instead of the

inaccessible derivative in line-of-sight.
2. Height information is not used although it might in re-

ality have a significant role to play in the determina-
tion of atmospheric correlations.

3. The covariance of A∇ is treated as though it were sta-
tionary even if it is likely to be height dependent and
empirically known only at ground level.

Given the lack of reliable information regarding the
stochastic properties of differential phase delay and the
ill-posedness of the estimation problem, none of these
simplifying neglections can be proven justified within the
framework in which the BLIE is valid. For the time being
wewill just assume their validity and not try to find amore
faithful stochastic model. However, ∇ and ∫ still need to
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be defined in terms of coordinates to provide a link be-
tween image geometry and stochastic aspects of the mea-
surements:

∇ ∶ A(⋅) ↦ A∇(⋅) =
1

Δr [Ap(p⋅) − Ap(p⋅ − Δ)]

∫ ∶ A(⋅) ↦ A∫(⋅) =

r⋅−ra
Δr

∑
k=0

Ap(p⋅ + kΔ)Δr

Here Δ = (Δr,0)T, Δr is the range difference between two
pixels and a ∈ T is a point undetermined apart from
its membership to the line joining ⋅ and the instrument.
Closedness of pT under translation by Δ is presumed only
to avoid problems of the definitions in the vicinity of the
boundary of pT .

Calculations mirroring those in section 3.2 show that
∇̄ and ∫ are isomorphisms between Ξ/ ker∇ and Im∇ and
π21∫1

∫
2
and ∇2∇1 are isomorphisms between F/ ker∇2∇1

and Im∇2∇1 for F ∋ σ and ∇2∇1σ = σ∇2∇1
. Thus one of

the GC’s K satisfying K − σ ∈ ker∇2∇1, as required in the
BLIE, can be seen to be

K(s, t) = ∫
1
∫
2
Cp(ps, pt) (10)

=

rs−ra
Δr

∑
k=0

rt−rb
Δr

∑
j=0

Cp(pa + kΔ, pb + jΔ)Δr2 .

Here a = (r0,φs)T and b = (r0,φt)T are chosen to lie on
the lower border of the interferogram. Equation (10) can
be interpreted as assuring that the GC K(s, t) can be com-
puted as the double integral of the stationary covariance
function Cc (Cp need not be stationary) along the two lines
Ls, Lt joining points a, b to s, t (see Fig. 3).

We recognize equation (10) as a discretization of the
integral representation of K(s, t) in the continuous case:

K(s, t) = ∫Ls
∫Lt

C(u, v)dudv

= ∫

rs

r0
∫

rt

r0
Cp

([
r1
φs]

,
[
r2
φt])

dr1dr2

= ∫

rs

r0
∫

rt

r0
Cc

(
ϕ

[
r1
φs]

,ϕ
[
r2
φt])

dr1dr2

This can be understood intuitively. The total correlation
between the APS associated to points s and t consists of
the sumof all individual correlations betweenpoints in the
atmosphere along the propagation paths Ls and Lt . Even
thoughK(s, t) is instationary, it differs froma stationaryGC
only by an element of ker ∇2∇1 as proven in [8, pp. 179–
186].

To summarize our findings and tie them to a practi-
cally feasible algorithm,wepropose the following scheme:

Figure 3: Geometric relations between A (top layer) and A∇ (lower
layer) are inherited by the covariance functions.

1. Choose PS lying outside the deformation area by
thresholding on theADI andusing prior knowledge on
stable areas.

2. Calculate A∇ from a version of A previously smoothed
with a median filter to reduce the impact of noise on
the estimation of the derivative.

3. Infer Cc(cs, ct) = E[A∇(s)A∇(t)] by minimizing the
squared error between the empirical covariance and
the parametric anisotropic stationary covariance
model.

4. Calculate the GC K(s, t) using eq. (10) and estimate ΣN
by using formulas linking coherence and signal-to-
noise ratio (see e.g. [10, p. 98]) and a rough prior of
the variance of the APS.

5. Estimate the APS at the unobserved locations using
its noisy observations on the PS using eq. (9) and sub-
tract it from the measurements to estimate the defor-
mations.

We finally propose to perform these steps for a set of over-
lapping windows to lessen the computational burden and
the impact of neglected but potentially existing instation-
arity in Cc(cu, cv).

In our tests, step 3. proved to be problematic. In accor-
dance to Fig. 2 the estimation of an anisotropic covariance
function yielded very short correlation lengths in range-
direction. This, however, affectedunfavourably the robust-
ness of the output and the runtime of the algorithm due to
the demand for smaller steps in the numerical integration
of Cc. To sidestep these challenges, isotropy of Cc was as-
sumed during the production of the results presented in
section 4. Additionally, r0 was set to 0 and Cc chosen in a
way to optimize the fit betweenK and the empirical covari-
ance of A(⋅), circumventing occasionally unreliable infer-
ence of K from a single dataset.
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4 Validation and conclusion
For testing and validation purposes we draw upon the
data gathered during a 2014 measurement campaign in
the alpine regions of southern Switzerland, see [3]. The
dataset features rugged terrain with height differences
exceeding 1 km, a spatiotemporally highly variable APS,
and stable reference areas surrounding a rapidly mov-
ing glacier. Data were collected with a sampling interval
of 2minutes from a location across the valley, at a dis-
tance of up to 8 km from the monitored area. Even though
movements locally reach 2m/day, the influence of the APS
can mask the signal to the point where atmospheric ar-
tifacts and real displacements become indistinguishable
(see Fig. 4).

Figure 4: From top to bottom: Average of five two-minute interfero-
grams, estimated velocities after subtraction of the APS and error
variance.

For the estimation of the APS the phase values of ap-
proximately 3500 PS were used, the distribution of which
was very sparse in the right fifth of the interferograms
shown in Fig. 4 (≈ 25PS/km2) and increasingly dense to-
wards their center (≈ 350PS/km2). As can be seen in Fig. 4,
the correction scheme performswell in regionswith a high
amount of PS and produces poor results in regions with
few PS (right) or bad coherence (left). This is also sup-
ported by the accompanying estimation of the error vari-
ance, which is helpful for quantifying the uncertainty as-
sociatedwith theAPS correction procedure. It isworth not-
ing that the left parts of the images contain the backscat-
tering of objects in a distance of about 4 km to the instru-
ment while for the right, topographically highly irregular
parts, this distance is about 8 km. Consequently the error
variances are significantly higher in the latter area.

Depending on the number of PS, the error variance for
deformation estimation using 2-minute interferograms is
in certain regions of a magnitude that rivals the amplitude
of the signal. This can be explained with short correlation
lengths induced by turbulent atmospheric behavior; av-
eraging in time improves the stochastic properties of the
residuals by mitigating temporal high-frequency compo-
nents. Fig. 5 shows the average total errors derived from
cross validation on the stable areas as a function of aver-
aging time and size of the area without any PS in it.

Two obvious trends are clearly visible: larger averag-
ing times lead to more reliable estimations in both cases
and the larger the area without reliable APS-observations,
the more uncertain the results. Less than 0.05 m/day av-
erage total error are reached within 20 minutes with our
approach, whereas simple averaging in time needs 12 h,
and the widely employed fitting of second order polyno-
mials (not shown) around 2 h. Due to the stochastic nature
of the estimator,we expect that high irregularity of theAPS

Figure 5: Average total errors of estimated deformations for the IRF-
k approach and simple temporal averaging. Colouring added for
better visual distinction between error levels.
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and dense distribution of PSwill further widen the gap be-
tween the method proposed here and comparable meth-
ods relying on deterministic assumptions.

We conclude the suitability of IRF-k’s for mitigating
the atmospheric phase screen and facilitatingdeformation
monitoring based on interferogramsheavily affected by in-
stationary autocorrelated atmospheric noise as expected
in mountaineous terrain. We will further pursue an ap-
proach generalizing IRF-k’s to linear random functionals
and reproducing kernel Hilbert spaces of distributions to
better include geometric correlations induced by the to-
pography and best represented via linear operators acting
on stationary covariance functions in 3D space.

Glossary of mathematical terms and
symbols

General notation

XT Transpose of X
̂X Estimator for X
̄X Equivalence class of X

Index sets and variables

T Space, time or pixel indices
cs Cartesian coordinates of s ∈ T
ps Polar coordinates of s ∈ T
Ls Line joining Radar and s ∈ T

Spaces

L2(Ω) Space of square integrable random variables
Ξ Space of random fields
Λk Space of allowable measures
Im(f ) Image of the map f
ker(f ) Kernel of the map f
X/Y Quotient space X by Y

Random fields

M(⋅) Measurements
A(⋅) Atmospheric phase screen
N(⋅) Noise
ϵ(⋅) Estimation error

Measures and functions

δ Dirac measure
λ Arbitrary discrete measure
σ,K Covariance functions
C Translation invariant covariance function
Pk Polynomial of up to order k
π Canonical projection
ϕ Coordinate transform
f c Function acting on cart. coord.
f p Function acting on pol. coord.

Matrices and operators

ΣN Covariance matrix of noise
E Expectation operator
∇k+1 Differential operator of order at most k + 1
∇ Derivative in range direction
∫ Integration in range direction
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