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Abstract. The potential benefits of terrestrial
radar interferometry (TRI) for deformation mon-
itoring are restricted by the influence of changing
meteorological conditions contaminating the po-
tentially highly precise measurements with spu-
rious deformations. This is the case especially
when the measurement setup includes long dis-
tances between instrument and objects of inter-
est and the topography affecting atmospheric re-
fraction is complex. These situations are typi-
cally encountered with geo-monitoring in moun-
tainous regions, e.g. with glaciers, landslides or
volcanoes.

We propose and explain an approach for the
mitigation of atmospheric influences based on
the theory of intrinsic random functions of or-
der k (IRF-k) generalizing existing approaches
based on ordinary least squares estimation of
trend functions. This class of random functions
retains convenient computational properties al-
lowing for rigorous statistical inference while still
permitting to model stochastic spatial phenom-
ena which are non-stationary in mean and vari-
ance. We explore the correspondence between
the properties of the IRF-k and the properties
of the measurement process. Drifts in variance
are linked to the additive nature of atmospheric
effects along the propagation path and to the ir-
regularity of the terrain.

In an exemplary case study, we find that
our method reduces the time needed to obtain
reliable estimates of glacial movements from
12 h down to 0.5 h. We relate the estimated
error variance of the results to details of our
measurement campaign like roughness of ter-
rain, altitude differences and involved distances
thus indicating how this method is expected to
perform when applied under different conditions.
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1 Introduction

Terrestrial radar interferometry (TRI) is a tech-
nology providing spatiotemporally dense mea-
surements for the quantification of geometric sur-
face changes along the line-of-sight over distances
up to a few km. This is not only of immediate
practical interest in the context of applications
lika structural health monitoring, operation and
safeguarding of open pit mines or monitoring of
rockfalls endangering critical infrastructure but
could also facilitate better understanding of dy-
namic processes underlying large-scale geological
natural hazards through scientific measurements.

TRI is therefore regularly deployed in moun-
tainous regions, e.g. to survey glaciers (Voytenko
et al., 2012), assess the likelihood of geologi-
cally predisposed areas becoming active land-
slides (Caduff et al., 2014) or to observe the
flanks of volcanoes for deformation patterns in-
dicating an increase in activity (Rödelsperger et
al., 2010). But even though TRI as a remote
sensing technology has certain advantages over
classical point-based geodetic techniques in form
of its high sensitivity to small surface displace-
ments, inherently areal sampling and its remote
operability without need for any in-situ compo-
nents, it shares with them some of their limita-
tions.

Like for any other type of measurement TRI
data consist of a signal part and a noise part.
The latter is further decomposable into a spa-
tiotemporally highly autocorrelated component
having its origins in the essentially unpredictable
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meteorological changes along the propagation
path and a second, spatiotemporally uncor-
related, component subsuming thermal noise,
crosstalk between electronic circuits and move-
ments of the surveyed object on very short
length- or timescales or in manners otherwise in-
accessible to systematic analysis.

This second component becomes directly visi-
ble in the interferograms at locations correspond-
ing to regions with weak backscattering. There it
appears in the form of unsystematic disturbances
seemingly adhering to the restrictive probabil-
ity laws of white noise and is therefore easily
modeled stochastically and amenable to statis-
tical standard treatments.

Fig. 1: Two successive 2-minute interferograms, in
which the APS masks the deformations that are ac-
tually limited to the area outlined in black.

The noise component corresponding to at-
mospheric influences is more problematic. Not
only can this so called atmospheric phase screen
(APS) reach magnitudes and spatial extents al-
lowing it to completely mask the underlying
signal (see Fig. 1); its stochastic properties de-
pend on the topography and are consequently
non-constant because the APS associated with
a point t ∈ T (e.g., T = R3) is the result of

an integration of differential atmospheric effects
along the line joining t and the instrument posi-
tion. Accordingly, the APS cannot be second or-
der stationary, and thus widely known inference
methods like simple Kriging hold no optimality
properties. This raises the question of stochasti-
cally optimal inference of an instationary APS.

This inference problem has been approached
from different perspectives. Most of them em-
ploy a blend of (i) deterministic relations be-
tween APS, refractive index and meteorological
quantities and (ii) stochastic relations of the de-
terministically unmodelled residuals to deduce
the APS from the measurements. A purely de-
terministic approach was investigated by Gong
et al. (2010), who gathered meteorological data
and predicted the atmospheric phase delay us-
ing tools from weather forecasting. Iglesias et al.
(2014) mixed a polynomial model for the APS
with a multiple regression model meant to ex-
plicitly incorporate the information from altitude
and phase measurements on known stable points
into the coefficients of the polynomial APS. Pre-
supposing less regularity of the APS and placing
more emphasis on the structure found in the data
themselves lead Caduff et al. (2014) to estimate
the APS over the area potentially containing dis-
placements with a spatial low-pass filter.

It is in recognition of the irregular move-
ment patterns and highly variable meteorological
properties of air in mountainous terrain that we
adopt a data-driven viewpoint similar to the one
proposed by Caduff et al. (2014). In section 2 an
interpretation of the APS as an intrinsic random
function will be presented and followed in sec-
tion 3 by a scheme allowing rigorous statistical
inference for intrinsic random functions in form
of what is called the BLIE (Best Linear Intrin-
sic Estimator) in the geostatistical literature, see
Matheron (1973). Section 4 contains results val-
idating the proposed correction method in the
context of a monitoring campaign targeting an
alpine glacier in southern Switzerland.

2 A mathematical model for the APS

The area potentially containing moving objects
will be assumed known. A set of persistent scat-
terers (PS) lying outside of it have to be ex-
tracted from the data for later use as reference
points with good backscattering characteristics
and signal-to-noise ratio that provide reliable in-
formation regarding the APS over stable regions.
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To this end the amplitude dispersion index (ADI)
described for example in Noferini et al. (2005)
may be used although care must be taken to elim-
inate any PS detected in unstable areas. The
goal is then to derive for all locations t ∈ T
the least squares estimator minimizing the ex-
pected quadratic error E[(Â(t)−A(t))2] which
represents the deviation between predicted and
true APS, and to quantify the uncertainties as-
sociated with the resulting estimates. Acknowl-
edging the effect of noise unaccounted for oth-
erwise, we will refrain from employing a strict
interpolation procedure and instead perform es-
timation and smoothing simultaneously using a
coherence-based noise parameter.

The APS itself will be considered a random
field

A(·) : T 3 t 7→ A(t) ∈ L2(Ω) (1)

where L2(Ω) denotes the Hilbert space of square
integrable random variables on the probability
space Ω, see for example Christakos (2013, p 25).
The above definition is to be interpreted as A(·)
being an assignment of a random variable to each
location t ∈ T . At certain points during the
derivation of the BLIE it will also be necessary
to consider the space Ξ of all random fields. Mea-
surements M(·) on the PS will be demanded to
satisfy

M(·) = A(·) +N(·) (2)

with Noise N(·) being a zero-mean random field
with diagonal covariance matrix ΣN and A(·)
and N(·) uncorrelated. To model drifts in vari-
ance and expected value of A(·), the usual reg-
ularity assumption of second order stationarity
(s.o.s.) of A(·) is dropped and replaced by the
weaker assumption of A(·) being an intrinsic ran-
dom function of order k (IRF-k).

IRF-k’s can be understood as random func-
tions, for which a differential operator ∇k+1

of order k + 1 exists, such that ∇k+1A(·)
satisfies E[∇k+1A(t)] = 0 ∀t ∈ T and
E[∇k+1A(t)∇k+1A(s)] = C(t− s) ∀s, t ∈ T and
is thus s.o.s. although A(·) itself, as a sum of
atmospheric phase variations along wave propa-
gation paths of different lengths, will exhibit an
instationary variance depending on the distance
between instrument and targeted area. While
it can therefore not be s.o.s., the supposition of
s.o.s. derivatives of A(·) seems justifiable (see
Fig. 2) and will make rigorous inference possible.
Arguments and definitions will be made more
formal in the following section adhering closely

to notations laid out in Chiles and Delfiner (2012,
pp. 238-270) and loosely to the theory presented
in Matheron (1973).

Fig. 2: Measured displacement velocities and their
derivative in range-direction. The latter seems to be
zero-mean with a homogeneous correlation function.

3 Inference in the space of IRF-k

3.1 Intrinsic random functions

Let δ be the Dirac measure and δt, t ∈ T denote
its translate i.e., δt(T ′) = 1 if t ∈ T ′ ⊂ T and
δt(T ′) = 0 otherwise. Then the discrete measure
λ =

∑
i λiδti , acts on a function X : T → U via

Xλ :=
∑
i

∫
T

λiX(s)δti(ds) =
∑
i

λiX(ti).

If U is either L2(Ω) or R and X therefore a ran-
dom field or a normal, scalar function, define the
action of λ on X around t as

Xλ(t):=
∑
i

∫
T

λiX(s)δt+ti(ds) =
∑
i

λiX(t+ ti).

(3)
The space Λk of discrete measures allowable at
order k consists of those λ, for which all Polyno-
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mials P k : T → R of degree at most k vanish:

λ ∈ Λk ⇔
∑
i

λiP
k(t+ ti) = 0 ∀ t ∈ T

whereby the number of λi is almost arbitrary.
This emulates closely polynomials of degree k
being in the kernel of the differential operator
of order k + 1. Such Xλ are then called allow-
able linear combinations of order k, or ALC-k
for short. If λ ∈ Λk then polynomial drifts of
X(·) up to order k in mean and up to order 2k
in variance are mapped to 0 by λ according to

X(t) := Y (t) + P k(t)
Xλ(t) = Yλ(t) + P kλ (t)︸ ︷︷ ︸

0 since λ∈Λk

= Yλ(t)

E[X(s)X(t)] := K(s, t)︸ ︷︷ ︸
only function of t−s

+
∑
i6k

P i(s)f1
i (t)

+
∑
j6k

P j(t)f2
j (s) +

∑
i,j6k

P i(s)P j(t)

E[Xλ(s)Xλ(t)] = Kλλ(s, t) +
∑
i6k

P iλ(s)f1
i λ(t)

+
∑
j6k

P jλ(t)f2
j λ

(s) +
∑
i,j6k

P iλ(s)P jλ(t)

= Kλλ(s, t)︸ ︷︷ ︸
only function of t−s

where Kλλ(s, t) is understood as a notational ex-
tension of eq. (3) equivalent to

Kλλ(s, t) =
∑
i,j

λiλjK(t+ ti, s+ sj).

Xλ(t) is therefore free of the influences of those
polynomial drifts and would be stationary if
these were the only terms inciting instationary
behavior of X(·). If indeed this is the case and
the random field Xλ(·) : T 3 t 7→ Xλ(t) ∈ L2(Ω)
is zero-mean and s.o.s. for λ ∈ Λk:

E[Xλ(t)] = 0 ∀t ∈ T
E[Xλ(s)Xλ(t)] = C(t− s) ∀s, t ∈ T (4)

then X(·) is called an IRF-k. For explanatory
purposes we will showcase the necessary con-
structions and the derivation of the BLIE for the
APS A(·) in the 1D case only. The extensions
required to handle data in more than one dimen-
sion are straightforward (see Matheron, 1973)
and any non-obvious adjustments to the proce-
dure —necessary for the application to 2D ran-
dom fields in sec. 4—will only originate from the

polar geometrical nature of the measurements.
To avoid unnecessary clutter of symbols, the lin-
ear map Lλ : F 3 f(·) 7→ fλ(·) ∈ F with F some
space of functions will also be denoted by λ. No
confusion should arise due to the different mean-
ings of λ as a measure and the linear map that
maps a function f to fλ.

We will now define two specific measures ∇
and ∫ that are inverse to each other in a cer-
tain sense to be made explicit later. In section
3.3 they will be the basis for a formalization of
the idea that differencing in range direction can
make interferograms s.o.s. Let T be a set of pixel
indices now, and

∇ : Ξ 3 A(·) 7→ A∇ = A(·)−A(· − 1) ∈ Ξ

∫ : Ξ 3 A(·) 7→ A∫ (·) =
·−a∑
k=0

A(a+ k) ∈ Ξ

where A(·) : T 3 t 7→ A(t) ∈ L2(Ω), T ⊂ Z is a
discrete (1D) random field and a is an arbitrary
integer constant corresponding to the lower limit
of integration. A short calculation shows

∇∫ A(·) = ∇
( ·−a∑
k=0

A(a+ k)
)

(5)

=
·−a∑
k=0

A(a+ k)−
·−a−1∑
k=0

A(a+ k)

= A(·)
∫ ∇A(·) = ∫ (A(·)−A(· − 1))

=
·−a∑
k=0

A(a+ k)−A(a+ (k − 1))

= A(·)−A(a− 1)

so that ∇ and ∫ are not strictly inverses on Ξ.
However, analogous to integration and differen-
tiation in real analysis, ∫ ∇ differs from the iden-
tity function idΞ only by A(a − 1) which is an
element of ker∇ := {X ∈ Ξ : X∇ = 0} and can
be considered as giving rise to the identity on the
quotient space Ξ / ker∇. By the universal prop-
erty of quotient spaces (Ash, 2013 p. 89) ∃!∇̄ such
that

Ξ Im∇

Ξ/ ker∇

...................................................................................................................... ............
∇

........................................................................................... .......
.....

π

........
........
........
........
........
........
........
........
........
................
............

∇̄
π : Ξ 3 X 7→ X̄ ∈ Ξ/ ker∇

∇ = ∇̄ ◦ π
X̄ = {Y ∈ Ξ : Y−X ∈ ker∇}

commutes, that is ∇̄ ◦ πX = ∇X ∀ X ∈ Ξ.
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Here, as in X̄, the overbar is understood to in-
dicate the equivalence class of X under the re-
lation X ∼ Y ⇔ X − Y ∈ ker∇ and Ξ/ ker∇
is the space of equivalence classes with addition
X̄+ Ȳ = X + Y and scalar multiplication αX̄ =
αX,α ∈ R. Since ∇̄X̄ = ∇X is well defined ac-
cording to X ∼ Y ⇒ ∇(X−Y ) = 0⇔ X∇ = Y∇
and by the first isomorphism theorem for mod-
ules (Ash, 2013 p. 89) Im∇ ∼= Ξ/ ker∇ we sur-
mise that ∇̄ might be an isomorphism between
Im∇ and Ξ/ ker∇. Indeed it is

surjective by ∇̄(Ξ/ ker∇) = ∇̄ ◦ π(Ξ) = Im∇
injective by X̄ 6= Ȳ ⇒ X − Y /∈ ker∇

⇒ ∇X 6= ∇Y ⇒ ∇̄X̄ 6= ∇̄Ȳ
and lastly a homomorphism by

∇̄(X̄ + Ȳ ) = ∇(X + Y ) = ∇̄X̄ + ∇̄Ȳ
∇̄(αX̄) = ∇αX = α∇̄X̄ .

Furthermore, ∫̄ = π ◦ ∫ : Im∇ → Ξ/ ker∇ serves
as a two sided inverse homomorphism. This
means that the following diagrams commute.

Im∇ Im∇

Ξ/ ker∇

............................................................................................................ ............

idIm∇

........
........
........
........
........
........
........
........
........
................
............∫̄ ........................................................................................... .......

.....

∇̄ ∇̄∫̄X(·) = ∇̄π ∫ X(·)
= X(·)

Ξ/ ker∇ Ξ/ ker∇

Im∇

......................................................................... ............

idΞ/ ker∇

........
........
........
........
........
........
........
........
........
................
............

∇̄
........................................................................................... .......

.....

∫̄
∫̄ ∇̄X̄(·) = π ∫ ∇X(·)

= X̄(·)

As of now ∇̄ : Ξ/ ker∇ → Im∇ is identified as an
isomorphism with inverse ∫̄ : Im∇ → Ξ/ ker∇.
This implies in fact the recapturability of the
equivalence class of A(·) from A∇(·) since Ā(·) =
∫A∇(·) satisfies ∇̄Ā(·) = A∇(·) meaning that Ā
is the equivalence class of all solutions A(·) to
∇A(·) = A∇(·) with A∇(·) given. By exchanging
the space of functions on T ×T for Ξ in the quo-
tient space constructions, it is possible to show
that equivalence classes σ̄ of covariance functions
are recoverable from C in the same way equiv-
alence classes Ā of random functions are from
A∇. They turn out to be not only the mini-
mum requirement for best linear estimation but
also directly inferable from the data by extend-
ing the inversion procedure on the quotient space
Ξ/ ker∇ to F/ ker∇∇ and applying it to a para-
metric model of C.

3.2 Derivation of the BLIE

The main impediment complicating statistical
inference for instationary random fields is the
fact that the covariance function σ depends not
only on the difference between pixels but also
on the location, making it impossible to infer it
from one realization of a random field. But it
will turn out, that for optimal estimation the
instationary covariance is in fact not strictly
required; the equivalence class of its station-
ary part, termed generalized covariance (GC) by
Matheron (1973), will be sufficient. And the GC
in turn depends only on the equivalence class of
the random field enabling reliable estimation in
presence of drift in mean and variance. Since
A∇(·) can be assumed stationary, the covariance
function of the ALC-0 A∇(·)

E [A∇(s)A∇(t)] = σ∇∇(t, s) = C(t, s)

is stationary and can be inferred from the data.
Employing arguments from section 3.1 it can be
shown that for ∇1σ = σ∇δ and ∇2σ = σδ∇ the
inverse of ∇2∇1 : F/ ker∇2∇1 → ∇2∇1(F ) is
π21 ∫1 ∫2 with F some function space containing
σ and other quantities as defined below.

F ∇1(F )

F/ ker∇1

.............................................................................................................. ............

∇1

........
........
........
........
........
........
........
........
........
................
............

π1
...................................................................................... .......

.....

∇̄1

∇1(F ) ∇2∇1(F )

∇1(F )/ ker∇2

.............................................................................. ............

∇2

........
........
........
........
........
........
........
........
........
..............
............

π2
...................................................................................... .......

.....

∇̄2

π is natural projection onto the quotient space
∇̄σ̄ = ∇σ ; σ̄i equiv. class of σ in F/ ker∇i
∇i(F ) is space of functions of type ∇iσ, σ ∈ F

F ∇1(F ) ∇2∇1(F )

F/ ker∇2∇1

........................................................................................................................................................... ............
∇1

........................................................................................................................... ............
∇2

........................................................................................................................................................................................................................................................................................................................................................... ..........
..

π21

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

∇2∇1

Checking that they are inverses is simple:

For C ∈ ∇2∇1(F ), ∇1e = d, ∇2d = C

i) ∇2∇1π21 ∫
1
∫
2
C = ∇2∇1π21 ∫

1
(d+ q2)

= ∇2∇1π21(e+ q1︸︷︷︸
∈ker∇1

+ ∫
1
q2︸︷︷︸

∈ker∇2

)

= ∇2∇1ē
21 = ∇2∇1e = C
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ii) π21 ∫
1
∫
2
∇2∇1ē

21 = π21 ∫
1
∫
2
∇2(∇1e)

= π21 ∫
1
∇1e+ q2

= π21(e+ q1 + ∫
1
q2) = ē21

This directly translates to the formula

σ̄21 = π21∫1∫2C (6)

since ∇2∇1σ = σ∇∇ = C is known allowing in-
ference not of the instationary covariance func-
tion but only of its equivalence class π21σ. For
any λλ : σ 7→ σλλ with kerλλ ⊇ ker∇2∇1
λλ : F/ ker∇2∇1 3 σ̄21 7→ σλλ ∈ ∇2∇1(F ) is
well defined:

σ1 ∼ σ2 ⇔ σ1 − σ2 ∈ ker∇2∇1 ⊆ kerλλ
⇒ λλ(σ1 − σ2) = 0⇔ λλσ1 = λλσ2

Thus for any λ ∈ Λ0 σλλ only depends on the
equivalence class σ̄21 which can be calculated
from the stationary covariance C of the first
derivatives of A(·). We estimate the atmosphere
at t0 ∈ T linearly from n measurements:

Â(t0) =
n∑
j=1

λjM(t0 + sj) = λTM

The error ε(t0) = Â(t0)−A(t0) = Aε̃ +Nλ with
ε̃ =

∑n
j=0 λjδsj − δ is an instationary random

field. Forcing the residual term Aε̃ to be drift in-
dependent and stationary is equivalent to adding
the constraint ε̃ ∈ Λ0 effectively constraining ε̃
to eliminate constant polynomials translating to
the equation

∑n
i=1 λi − 1 = 0. Setting K̄ =

π21 ∫1 ∫2 C and C = σ∇∇ the error variance can
be written as

E[ε2] = E[(Aε̃ −Nλ)2]AqN= E[A2
ε̃ ] + E[N2

λ ]
= σε̃ε̃(t0, t0) + λTΣNλ

ε̃∈Λ0

= Kε̃ε̃(t0, t0) + λTΣNλ
= λT (Kij + ΣN )︸ ︷︷ ︸

K

λ− 2λTKt0 +K(t0, t0)

{Kij}kl = K(t0 + sk, t0 + sl)
{Kt0}k = K(t0 + sk, t0) k, l = 1, ..., n

Minimizing E[ε2] subject to
∑n
j=1 λj − 1 = 0

leads to the system of equations (Berlinet and
Thomas-Agnan, 2011 pp. 84-86)

Kλ+ 1−µ = Kt0 (7)

1−
Tλ = 1

where µ is a single Lagrange-multiplier and 1− ∈
Rn is a vector of ones. Successive substitution
gives as the final result

Â(t0) =
n∑
j=1

λjM(t0 + sj) (8)

λ = K−1
(
Kt0 − 1−(1−

TK−11−)−1(1−
TK−1Kt0 − 1)

)
This estimator can be seen to coincide with or-
dinary Kriging (see Cressie, 1990 for a similar
formulation) but with the GC K instead of the
stationary covariance C and an additional term
accounting for the effects of noise. How this for-
mula is to be adapted for practical application
under consideration of coordinate dependent as-
pects will be discussed in the next section.

3.3 Geometrical considerations and practi-
cal implementation

Let s ∈ T be a point and let cs = (xs, ys)T and
ps = (rs, ϕs)T denote Cartesian and polar coor-
dinates of this point, respectively. The coordi-
nate transform given by

φ : [0,∞)× [0, 2π) 3 ps 7→ cs ∈ R2

φ(ps) =
[
rs cos(ϕs)
rs sin(ϕs)

]
φ−1(cs) =

[ √
x2
s + y2

s

atan(ys/xs)

]
maps the polar coordinates of a point s to its
Cartesian coordinates. If f(·) is a function from
T to R then f c(·) and fp(·) will be the corre-
sponding functions acting on the Cartesian and
polar coordinates satisfying f(s) = f c(cs) and
f(s) = fp(ps). The identity f(s) = f c(cs) =
f c(φps) implies the transformation laws f c ◦φ =
fp and fp ◦ φ−1 = f c. An analogous statement
holds for functions with multiple inputs for which
the coordinate transform is applied to each input
separately, e.g.:

σc ◦ (φ, φ) = σp

σc = σp ◦ (φ−1, φ−1)

Following the line of argumentation outlined in
section 2 the derivative of the APS A(·) in line-
of-sight may be regarded as s.o.s.. It will be nu-
merically approximated by the discrete deriva-
tive of A(·) in range direction. Introducing the
measure ∇ as below, A∇(·) ≈ (∂/∂r)A(·) and a
linear map ∫ can be found such that the relation
between ∇ and ∫ closely resembles that of ∇ and
∫ as defined in the 1D case in section 3.1.
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Note however that apart from the errors intro-
duced by discretization, further sources of uncer-
tainty exist.

1. The derivative in range direction is used in-
stead of the inaccessible derivative in line-
of-sight.

2. Height information is not used although it
might in reality have an integral part to play
in the determination of atmospheric correla-
tions.

3. The covariance of A∇ is treated as though
it were stationary even if it is likely to
be height dependent and empirically known
only at ground level.

Given the lack of reliable information regarding
the stochastic properties of differential phase de-
lay and the ill-posedness of the estimation prob-
lem, none of these simplifying neglections can be
proven justified within the framework, in which
the BLIE is valid. For the time being we will
just assume their validity and not try to find a
more faithful stochastic model. However, ∇ and
∫ still need to be defined in terms of coordinates
to provide a link between image geometry and
stochastic aspects of the measurements:

∇ : A(·) 7→ A∇(·) = 1
∆r [Ap(p·)−Ap(p· −∆)]

∫ : A(·) 7→ A∫ (·) =

r·−ra
∆r∑
k=0

Ap(p· + k∆)∆r

Here ∆ = (∆r, 0)T, ∆r is the range difference
between two pixels and a ∈ T is a point unde-
termined apart from its membership to the line
joining · and the instrument. Closedness of pT
under translation by ∆ is presumed only to avoid
problems of the definitions in the vicinity of the
boundary of pT .

Calculations mirroring those in section 3.2
show that ∇̄ and ∫ are isomorphisms between
Ξ/ ker∇ and Im∇ and π21∫1∫2 and∇2∇1 are iso-
morphisms between F/ ker∇2∇1 and Im∇2∇1
for F 3 σ and ∇2∇1σ = σ∇2∇1 . Thus one of the
GC’s K satisfying K−σ ∈ ker∇2∇1 as required
in the BLIE can be seen to be

K(s, t) = ∫1∫2Cp(ps, pt) (9)

=

rs−ra
∆r∑
k=0

rt−rb
∆r∑
j=0

Cp(pa + k∆, pb + j∆)∆r2

Here a = (r0, ϕs)T and b = (r0, ϕt)T are chosen
to lie on the lower border of the interferogram.
Equation 9 can be interpreted as assuring that
the GC K(s, t) can be computed as the double
integral of the stationary covariance function Cc
(Cp need not be stationary) along the two lines
Ls, Lt joining points a, b to s, t (see Fig. 3).

Fig. 3: Geometric relations between A (top layer)
and A∇ (lower layer) are inherited by the covariance
functions.

We therefore recognize equation 9 as a discretiza-
tion of the integral representation of K(s, t) in
the continuous case:

K(s, t) =
∫
Ls

∫
Lt

C(u, v)dudv

=
∫ rs

r0

∫ rt

r0

Cp
([

r1
ϕs

]
,

[
r2
ϕt

])
dr1dr2

=
∫ rs

r0

∫ rt

r0

Cc
(
φ

[
r1
ϕs

]
, φ

[
r2
ϕt

])
dr1dr2

This can be understood intuitively. The total
correlation between the APS associated to points
s and t consists of the sum of all individual cor-
relations between points in the atmosphere along
the propagation paths Ls and Lt. Even though
K(s, t) is instationary, it differs from a stationary
GC only by an element of ker ∇2∇1 as proven in
Gelfand and Vilenkin (1964, pp. 179-186).

To summarize our findings and tie them to
a practically feasible algorithm, we propose the
following scheme:

1. Choose PS lying outside the deformation
area by thresholding on the ADI and using
prior knowledge on stable areas.

2. Calculate A∇ from a version of A previ-
ously smoothed with a median filter to re-
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duce the impact of noise on the estimation
of the derivative.

3. Infer Cc(cs, ct) = E[A∇(s)A∇(t)] by min-
imizing the squared error between the
empirical covariance and the parametric
anisotropic stationary covariance model.

4. Calculate the GC K(s, t) using eq. 9 and
estimate ΣN by using formulas linking co-
herence and signal-to-noise ratio (see e.g.
Hanssen, 2006 p. 98) and a rough prior of
the variance of the APS.

5. Estimate the APS at the unobserved loca-
tions using its noisy observations on the PS
using eq. 8 and subtract it from the measure-
ments to estimate the deformations.

We finally propose to perform these steps for a
set of overlapping windows to lessen the compu-
tational burden and the impact of neglected but
potentially existing instationarity in Cc(cu, cv).

In our tests step 3. proved to be problem-
atic. In accordance to Fig. 2 the estimation of
an anisotropic covariance function yielded very
short correlation lengths in range-direction. This
however affected unfavourably the robustness of
the output and the runtime of the algorithm due
to the demand for smaller steps in the numerical
integration of Cc. To sidestep these challenges,
isotropy of Cc was assumed during the produc-
tion of the results presented in section 4. Addi-
tionally r0 was set to 0 and Cc chosen in a way
to optimize the fit between K and the empiri-
cal covariance of A(·) circumventing occasionally
unreliable inference of K from a single dataset.

4 Validation and conclusion

For testing and validation purposes we draw
upon the data gathered during a 2014 measure-
ment campaign in the alpine regions of southern
Switzerland, see Butt et al. (2016). The dataset
features rugged terrain with height differences
exceeding 1 km, a spatiotemporally highly vari-
able APS, and stable reference areas surrounding
a rapidly moving glacier. Data were collected at
a sampling interval of 2 minutes from a location
across the valley, at a distance of up to 8 km from
the monitored area. Even though movements lo-
cally reach 2 m/day the influence of the APS can
mask the signal to the point where atmospheric
artifacts and real displacements become indistin-
guishable (see Fig. 4).

Fig. 4: From top to bottom: The average of five
two-minute interferograms, estimated velocities after
subtraction of the APS and the error variance.

For the estimation of the APS the phase val-
ues of approximately 3500 PS were used, the
distribution of which was very sparse in the
right fifth of the interferograms shown in Fig. 4
(≈ 25PS/km2) and increasingly dense towards
their center (≈ 350PS/km2). As can be seen
in Fig. 4 the correction scheme performs well in
regions with a high amount of PS and produces
poor results in regions with few PS (right) or bad
coherence (left). This is also supported by the
accompanying estimation of the error variance,
which is helpful for quantifying the uncertainty
associated with the APS correction procedure. It
is worth noting that the left parts of the images
contain the backscattering of objects in a dis-
tance of about 4 km to the instrument while for
the right, topographically highly irregular parts
this distance is about 8 km. Consequently the er-
ror variances are significantly higher in the latter
area.
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Depending on the number of PS the error
variance for the deformation estimation using 2-
minute interferograms is in certain regions of a
magnitude that rivals the amplitude of the sig-
nal. This can be explained with short correlation
lengths induced by turbulent atmospheric behav-
ior; averaging in time improves the stochastic
properties of the residuals by mitigating tempo-
ral high-frequency components. Fig. 5 shows the
average total errors derived from cross validation
on the stable areas as a function of averaging
time and size of the area without any PS in it.

Fig. 5: Average total errors of estimated deforma-
tions for the IRF-k approach and simple stacking.

Two obvious trends are clearly visible: larger
averaging times lead to more reliable estimations
in both cases and the larger the area without re-
liable APS-observations, the more uncertain the
results. Less than 0.05m/day average total er-
ror are reached within 20 minutes with our ap-
proach, whereas simple averaging in time needs
12 h and the widely employed fitting of second
order polynomials (not shown) around 2 h.

We conclude the suitability of IRF-k’s for mit-
igating the atmospheric phase screen and facil-
itating deformation monitoring based on inter-
ferograms heavily affected by instationary au-
tocorrelated atmospheric noise as expected in
mountaineous terrain. We will further pursue
an approach generalizing IRF-k’s to linear ran-
dom functionals and reproducing kernel Hilbert
spaces of distributions to better include geomet-
ric correlations induced by the topography and
best represented via linear operators acting on
stationary covariance functions in 3D space.
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