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Multi-temporal Synthetic Aperture Radar Metrics
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Abstract—Multi-temporal synthetic aperture radar (SAR)
metrics are assessed to map open water bodies. High temporal
variability and low minimum value in a time series of Envisat
Advanced SAR (ASAR) Wide Swath Mode (WSM) backscatter
measurements characterize open water bodies with respect to
other land cover types. Confusion occurs in the case of steep
terrain (slope angle > 10°), less than 10 backscatter observations
and for mixed pixels with a water fraction. The behavior of the
two SAR multi-temporal metrics is consistent at six study areas
in Europe and Central Siberia. A simple thresholding algorithm
applied to the multi-temporal SAR metrics to map open water
bodies performs with overall accuracies above 90% in the case of
pure pixels of water or land. The accuracy decreases when mixed
pixels are accounted for in the reference dataset and for increasing
land fraction in the reference samples. An overall accuracy of
approximately 80%was obtained for a 50% threshold of the water
fraction. Omissions of water areas occur mostly along shorelines.
Specific conditions of the land surface can distort the minimum,
causing commission in the water class. The use of a low order rank
or percentile instead of the lowest backscatter value can reduce
such commission error.

Index Terms—Envisat ASAR, minimum backscatter, SAR
backscatter, temporal variability, water bodies, wide swath mode.

I. INTRODUCTION

S PACEBORNE Synthetic Aperture Radar (SAR) data are
available from a number of satellites operating at different

wavelengths, with multi-mode image configurations and are op-
erated with different acquisition strategies. Typically, the acqui-
sition of high resolution SAR systems (1–20 m) targets specific
areas. Sensors with acquisition modes at moderate resolution
(100–1,000 m) are instead operated to acquire data on a global
scale in a repeated manner. In view of generating estimates of
a land surface parameter for large areas, moderate resolution
image data products become the only practical alternative if a
mapping solution based on SAR data is explored. The avail-
ability of repeated acquisitions is of advantage since multi-tem-
poral observations allow reduction of speckle noise [1], detec-
tion of trends in land surface parameters such as soil moisture
[2], wetlands [3]–[5], cropland [6] and water bodies [7]–[9]. In
addition, multi-temporal data allow the generation of additional
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parameters, herewith referred to as multi-temporal metrics, with
acknowledged potential in thematic mapping [10][11].
The major limitation of single SAR backscatter images to

map water bodies relies in the dependence of the backscattered
signal upon the surface conditions of the water body. Thresh-
olding approaches or supervised approaches applied to a single
image were sufficient to detect and delineate lakes and rivers in
C- and X-band co-polarized data as long as the backscatter was
overall low with respect to other land surfaces [12]–[17]. Sev-
eral authors reported false detections of water as land in the case
of rugged water surface [12]–[15], which could be compensated
for to a certain extent by using active contour methods [12],
[18]. The generation of a global Water Indication Mask (WAM)
from X-band TanDEM-X/TerraSAR-X image pairs [15], [18],
[19] profits from a combination of classifications based on SAR
amplitude and interferometric SAR coherence using individual
threshold-based approaches on each observable [19]. Classifica-
tion accuracy reported in terms of correctness and completeness
was between 51% and 72%, and 60% and 81%, respectively,
for three latitudinal transects. Slightly higher accuracy was ob-
tained when using coherence data only [19].
Multi-temporal observations were used to understand and

quantify dynamics of water bodies [5], [8], [9], [13]; a gen-
eral conclusion was that the temporal sampling even in the
case of very frequent observations as in the case of Envisat
ASAR ScanSAR images was not optimal to track dynamics
in a sufficiently detailed manner. Multi-temporal observations
furthermore revealed changes of the SAR backscatter over
lakes and rivers covered with ice [7], [20]. For bottom-fast ice,
low backscatter was observed; in the case of liquid water under
the ice, the SAR backscatter level depended on the composition
of the ice layer [21]–[24].
The objective of this paper is to investigate the properties of

metrics derived from multi-temporal SAR data and demonstrate
their usefulness in the context of land surface characterization
with particular regard to the detection of open water bodies. Ul-
timately, the goal was to assess the potential of moderate res-
olution SAR data to complement classification of water bodies
in global land cover products [25]. To this scope, we aimed at
setting up and validating a water body mapping algorithm that
could be straightforward and robust at the same time.
The SAR dataset consisted of images of the radar backscat-

tered intensity acquired by the Envisat Advanced SAR (ASAR)
instrument. To assess the consistency of the multi-temporal
metrics and the robustness of the water body mapping ap-
proach from the SAR data here considered, investigations
were undertaken at several study areas characterized by dif-
ferent typologies of land cover and water bodies, terrain
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TABLE I
LIST OF STUDY AREAS. CORNER COORDINATES REFER TO TOP-LEFT (TL) AND BOTTOM-RIGHT (BR)

COORDINATES EXPRESSED IN THE FORM OF LATITUDE AND LONGITUDE

conditions and seasonality. Section II provides an overview
of the study areas. Section III describes the SAR datasets
and the reference datasets. Section IV presents the signature
analysis of multi-temporal metrics for different land cover
classes. Section V describes the approach developed to map
water bodies using the multi-temporal SAR metrics found
to be most suitable for this application. Classification results
and agreement statistics with respect to the reference datasets
are discussed in Section VI. Finally, a set of conclusions are
presented in Section VII.

II. STUDY AREAS

Multiple sites were considered in order to obtain broad
understanding of SAR metrics potentially suitable for mapping
water bodies and to come up with a robust mapping algorithm,
capable to withstand effects of seasonal conditions on the SAR
backscatter and different land cover composition. Six study
areas were selected (see Table I) following these requirements:
(i) diverse landscape in terms of land cover, water bodies and
topography;

(ii) diverse seasonal and environmental conditions;
(iii) availability of large number of SAR backscatter measure-

ments within a one-year period;
(iv) availability of reliable datasets to be used as reference.
While this selection captured a wide diversity of land cover

types, we did not explicitly consider areas characterized by tem-
poral dynamics (e.g., due to inundation) because beyond this
first evaluation of multi-temporal SAR metrics in water body
characterization. The size of the study areas ranged between

km and km (Table I). In total, detection
of water bodies with multitemporal SAR metrics was tested for
more than km .

III. DATASETS

A. SAR Dataset

The SAR dataset consisted of images acquired by Envisat
ASAR in theWide Swath Mode (WSM). The ASAR instrument
operated at C-band (wavelength of 5.7 cm) with a multi-mode
configuration [26]. Because of the large swath of the WSM
mode (approximately 400 km), any point on the ground could
be observed several times throughout the repeat-pass interval of
the satellite (35 days between January 2002 and October 2010,

Fig. 1. Histograms of number of ASAR observations per pixel for each study
area. Number of observations have been binned in classes of 10 observations
each.

then 30 days until April 2012). A WSM image was character-
ized by look angles spanning between 18 (near range) and 42
(far range). The data were acquired in single-polarization mode,
either Horizontal-Horizontal (HH) or Vertical-Vertical (VV).
For this study, a one-year dataset of all Envisat ASAR WSM

images over each of the study areas was considered. It was
assumed that the number of backscatter observations collected
within one year would have been sufficient to provide reliable
multi-temporal SAR metrics while there would have been
only minor large scale changes of the landscape. To avoid
large differences in time with the date of the reference datasets
(Section III-B), the SAR dataset consisted of all images ac-
quired in 2005. Table II presents an overview of the number of
images covering each study area. Images were available from
ascending and descending orbits and were acquired mostly in
VV polarization. Fig. 1 shows the histogram of the number
of ASAR observations per pixel. For each site, the smallest
number of observations were located in correspondence of the
edges.
The ASAR WSM data consisted of images of the backscat-

tered intensity (Level 1P products) with a pixel size of
m m, whereas the spatial resolution is approximately

120 m both in range and in azimuth direction [27]. The SAR
images were first calibrated using factors provided by ESA in
the image data file. A buffer zone along the perimeter of an
image was removed because of occasional processing artifacts.
Multi-looking, i.e., spatial averaging, in a window was
applied to obtain images with a pixel size of 300 m m.
This resolution was selected to be in line with the resolution of
global land cover mapping efforts [25], [28]. However, a
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TABLE II
NUMBER OF ENVISAT ASAR WIDE SWATH IMAGES FOR EACH OF THE STUDY
AREAS. EACH IMAGE CORRESPONDS TO A 400-KM-WIDE IMAGE TAILORED
IN LENGTH BY ESA TO COVER THE STUDY AREA. FOR THE NUMBER OF

OBSERVATIONS PER PIXEL, REFER TO FIG. 1.

multi-looked version of the original dataset with an output pixel
size of m m was also generated for the study area of
the Netherlands to investigate the impact of spatial resolution
on water body mapping.
For each study area, the corresponding SAR images were

terrain geocoded [29] to the geographic projection using the
3-arcsec Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model [30] south of 60 or digitized terrain eleva-
tion information [31] north of 60 . A look-up table describing
the transformation between the radar and the map geometry
was generated based on orbital parameters and the DEM. To
correct for geolocation errors due to errors of orbital parameters
or the SAR image metadata, a refinement of the lookup table
was applied. The refinement consisted of estimating the offset
between the SAR backscatter image to be geocoded and a
reference image for the output geometry [32]. The reference
image was typically a SAR backscatter image simulated from
the DEM. Because of the predominantly flat terrain within the
study areas of the Netherlands and Poland, the latter image
did not present any feature that would match with the SAR
backscatter image. Here, the reference consisted of a mosaic
of Landsat images obtained through the Global Land Cover
Facility (GLCF, http://glcf.umd.edu), resampled to the pixel
size of the SAR data.
The registration error of the SAR images with respect to the

reference datasets was less than 1/3rd of the pixel size. The SAR
images with 300 m pixel size were geocoded to 1/360th of a de-
gree, in accordance with the GlobCover product [25]. SAR im-
ages with a pixel size of 150 m were geocoded to corresponding
pixel sizes in degrees, i.e., 1/720th of a degree.
The co-registered SAR images were filtered with amulti-tem-

poral approach to decrease speckle noise [1]. The filtered images
were obtained from the original dataset by means of a linear
combination with weights corresponding to the local spatial av-
erage of the individual (unfiltered) intensity channels. Over tex-
tured terrain, however, spatially adaptive filters allow better es-
timates of the radar cross section; hence, it was chosen to de-
fine the weights starting from a speckle-reduced image obtained
with the GAMMAMAP filter [33] rather than from the original
unfiltered image. The advantage of the multi-temporal approach
compared to a spatial filter is preservation of spatial resolution.

To quantify the uncertainty of the backscatter measurements,
the Equivalent Number of Looks (ENL) [34] was estimated. The
ENL was computed in polygons that visually showed small spa-
tial variability of the backscatter. To understand the impact of
the number of observations available per pixel on the ENL esti-
mates, polygons were located in areas including at least 20 ob-
servations of the backscatter. The proportion of pixels with less
than 20 backscatter observations was small; such pixels were
mostly located at the edge of a study area.
The ENL of Envisat ASAR WSM Level 1P images was re-

ported to be approximately 15 [27]. As a result of multi-looking,
the ENL of the backscatter images with a pixel size of 300mwas
mostly between 40 and 60 (corresponding to 0.6–0.7 dB uncer-
tainty of the backscatter). This result is explained by considering
that Level 1P data is oversampled by factors close to 2 in range
and in azimuth; therefore, multi-looking in a window cor-
responds to averaging over approximately 4 independent looks.
After speckle filtering, the ENL was mostly between 130 and
170, corresponding to a backscatter uncertainty of 0.3–0.4 dB.
The ENL estimates did not show dependence upon the number
of observations per pixel. Based then on the results of the sig-
nature analysis (see Section IV), it was reasonable to assume
that the backscatter uncertainty would play a minor role in this
study.
As a final step, compensation of the SAR backscatter in the

case of sloped terrain was applied as described in [35], [36]
using an estimate of the pixel area and the local incidence angle.

B. Land Cover Datasets

Two land cover datasets with proven thematic accuracy, geo-
metric precision and reliability were selected to act as reference
throughout this study: the CORINE (Coordination of Informa-
tion on the Environment) land cover dataset [37] and the SRTM
Water Bodies Dataset (SWBD) [38].
The CORINE land cover dataset was produced for the large

majority of the member states of the European Union with a
spatial resolution of 100 m and 250 m for the years 1990, 2000,
and 2006 from high-resolution optical imagery. For our work,
the 250 m dataset of 2006 (referred to as CLC2006) was con-
sidered [39].
The SRTMWater Bodies Dataset (SWBD) is a vector dataset

derived from the SRTM data acquired in February 2000. It
shows shoreline of water bodies (lakes, rivers and oceans) at the
time of acquisition of the radar data [38]. The dataset covers all
land masses between 60 and 60 with a spatial resolution
of 90 m. The time difference between the SRTM and the ASAR
dataset (five years) was taken into account by cross-checking
the SWBD dataset with Google Earth imagery in the case of
large differences between SWBD and the mapping result from
the ASAR dataset (e.g. recent water reservoirs).
For the comparison with the SAR datasets and the corre-

sponding water body maps, the CLC2006 and SWBD datasets
were transformed to the map geometry and the pixel size of the
geocoded SAR data. The CLC2006 land cover was resampled
with a nearest neighbor approach. The SWBD dataset was ras-
terized to the pixel size of the SAR datasets. The CLC2006 and
the SWBD datasets complemented each other to cover all study
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areas. For study areas where both datasets were available, the
agreement in terms of water and land classes was above 90%.

C. Samples Based on Google Earth Imagery

Samples extracted from high-resolution imagery in global
image and map viewers such as Google Earth are an alterna-
tive approach to generate reference information. In this study,
a stratified random sampling approach has been developed to
select land and water samples in equal manner. Polygons corre-
sponding to a pixel in the SAR image were overlaid onto Google
Earth image and the land cover therein was interpreted. In the
case of mixed water/land cover, e.g., in proximity of shorelines,
the water cover fraction within the polygon was also estimated.
The estimates were reported in intervals of 5%; a value of 1%
refers to pixels edging a shoreline but not including any signifi-
cant portion of water. To limit bias due to the operator, the poly-
gons were revisited after some time and a second estimation of
fractional water cover was performed. The estimates of water
fraction differed at most by 10% from which we concluded that
the estimates of water fraction were sufficiently reliable to be
used as reference. The number of reference samples was deter-
mined with respect to aminimum required product accuracy and
confidence level [40]. To obtain a classification accuracy of at
least 85% with a confidence level of 0.05, 93 was the minimum
number of samples required. To allow a correct representation of
the three possible classes involved in our study (“pure” water,
“pure” land and mixed pixels), 279 samples were selected for
each study area.
When labeling each sample, the year of the image in Google

Earth was taken into account. The majority of the samples
were evaluated from high-resolution imagery acquired in 2005
and 2006. Samples for which data were available for 2009 and
2010 only were cross-checked with the CLC2006 or the SWBD
datasets. The screening did not reveal any difference between
the Google Earth samples and the raster dataset.

IV. SIGNATURE ANALYSIS

The multi-temporal SAR metrics considered in this study
were the minimum backscatter (MB) and the temporal vari-
ability (TV) of the backscatter defined as the standard deviation
of the backscattered intensities in the logarithmic decibel (dB)
scale. The use of the dB scale for the latter parameter enhanced
the contrast with respect to a standard deviation based on
intensities in the linear scale.
Fig. 2 shows the images of TV and MB for the study area

of Västerbotten. Inland water bodies and the Gulf of Bothnia
in the east of the study area were characterized by the highest
TV and lowest MB. To get an understanding for the behavior
of TV and MB of water and land surfaces, Fig. 3 shows the
time series of the SAR backscatter for three pixels labeled in
CLC2006 as water body, arable land and forest, respectively.
The continuous variation of the SAR backscatter in time over
open water implied the highest TV among the three cases here
considered. The TV of arable land was affected by changes
of the backscatter during the growing season, located approx-
imately in the middle of the time series. The TV of forest was
very low since the backscatter was rather constant in time. The

Fig. 2. Images of TV (top) andMB (bottom) for the study area of Västerbotten.

MB was lowest over water because of the repeated occurrence
of specular scattering in the forward direction (i.e., calm wind
conditions).
In this study, we assumed that the effect of noise in areas

of very low backscatter was negligible. The Noise Equivalent
Sigma Zero (NESZ) of Envisat ASAR inWide SwathMode was
between 21 and 26 dB [41]. Such values occurred seldom
and only for water areas (see Fig. 3). The effect of NESZ was
found to be negligible when the MB was set equal to a low rank
parameter of the backscatter histogram rather than to the lowest
value.
The different behavior of TV and MB over water and land is

further shown by the density plots in Fig. 4 for the study area of
the Netherlands and the major four land cover classes therein.
Land cover classes were identified using the CLC2006 product.
A one-pixel edge-eroded version of the CLC2006 product was
used to focus on pure pixels of a certain land cover type.
While the range of values of the individual parameters over-

lapped, the combination of TV and MB showed a clear sepa-
ration between the water and the land classes. Water presented
high TV and lowMB in consequence of the strong variability of
the SAR backscatter in time and the very low return under calm
conditions resulting in specular reflection in the forward direc-
tion, respectively. Other land cover classes were mostly charac-
terized by lower TV and higher MB.
Density plots with respect to the most frequent land cover

classes were investigated for all study areas. Water bodies were
characterized by values of TV mostly above 2 dB and minimum
backscatter below 16 dB. Other land cover classes presented
TV values between 1 and 3 dB and minimum backscatter above
15 dB. The wetlands class consisted of inland marshes, peat

bogs and salines. Marshes and peat bogs were characterized by
a rather constant backscatter in time except for areas affected
by seasonal flooding, e.g., Doñana wetlands in the south of An-
dalusia [4] where the TV was between 2 and 3 dB and the MB
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Fig. 3. Time series of SAR backscatter for three pixels labeled in CLC2006
as water body (top), arable land (middle) and forest (bottom), respectively. TV
and MB estimates are presented above the corresponding panel. Study area: the
Netherlands. Pixel size: 300 m 300 m.

Fig. 4. Density plots of TV andMB for pixels belonging to the water class with
respect to major land classes for the study areas of the Netherlands. Increase of
density is shown by colors changing from blue to red. The density plot for the
water class is shown in each scatterplot for clarity reasons. Pixel size: 300 m
300 m. Land cover mask: CLC2006.

between 13 and 15 dB, i.e. in between features of perma-
nent land and permanent water surfaces. The MB and TV of
salines instead was similar to the observations over open water.
In this study, salines were considered as “land” because, in gen-
eral, they may not be filled with water for a certain period of
time.
To quantify the separability between the water class and a

land class, the Jeffreys-Matusita (J-M) distance was computed

Fig. 5. Scatterplots of TV and MB for water and other land cover classes (pure
pixels) and with respect to the number of SAR observations available per pixel.
Study area: Andalusia. Pixel size: 300 m 300 m. Land cover mask: CLC2006
(one-pixel edge eroded).

[42]. A J-M distance close to zero indicates no separability be-
tween the classes being compared whereas a distance of 2 in-
dicates total separability. J-M distances were computed for the
water class with respect to each of the four major classes in the
CLC2006 product (see Fig. 4), for either the TV and the MB.
The measured J-M distances were between 1.9 and 2.0 regard-
less of the metric and the land cover class being compared to.
These results confirmed very high separability between water
and land classes. Nevertheless, there are reasons for which TV
and MB over land and water were similar as discussed in the
remainder of this section.

A. Number of SAR Backscatter Measurements

Since the TV is defined as a standard deviation, a reliable es-
timation of the TV requires a large enough number of measure-
ments. Especially over water the TV estimation is affected if the
available number of measurements was below 10. Fig. 5 shows
four scatterplots of TV and MB for water and other land cover
classes, each being characterized by a threshold on number of
observations per pixel. The TV and MB of the land pixels were
unaffected by the number of observations (red circles vs. grey
dots). On the contrary, the TV of water pixels based on less than
10 backscatter measurements was smaller compared to the es-
timate obtained for water pixels with more backscatter obser-
vations (dark circles vs. cyan dots). When considering a higher
threshold for the number of observations per pixel (panel for
thresholds of 15 and 20 in Fig. 5), the behavior of TV did not
differ with respect to pixels characterized by more observations.
Although, the interpretation of the different behavior of TV for
the threshold of 10 observations is supported by a very small
number of pixels and there were not less than 10 observations
per pixel at the other study areas, we interpreted the result as
a warning that the TV over water could be unreliable if based
upon a small number of measurements.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 6. Histograms of TV (left panel) and MB (right panel) for pixels identified as water, land with slope angle 10 and land with slope angle 10 in the
Switzerland study area. Pixel size: 300 m 300 m. Land cover mask: SWBD (one-pixel edge eroded). Slope angle derived from SRTM DEM.

B. Topography

Areas of layover and shadow were identified during SAR
processing using information from the DEM, orbital data and
look geometry parameters [29] and were masked out from
the geocoded SAR images. For other areas on sloped terrain
showing modulation of the backscatter after the compensation
for pixel area and local incidence angle, we explained such
distortions as a consequence of imperfect characterization of
slopes in the DEM or orientation-dependent scattering effects
[43], [44]. The effect of sloped terrain on TV and MB was
investigated by creating histograms for water and land with
slope angle either below or above a certain threshold. For a
threshold of 10 , we saw the clearest indications on the effect
of sloped terrain on the two parameters. The histograms of TV
and MB for water and land surfaces with gentle to moderate
slopes ( 10 ) were almost disjoint (Fig. 6). The histograms
for land surfaces with steep slopes ( 10 ) instead committed
to more joint parts when compared with the histograms of land
surfaces with slopes .

C. Mixed Pixels

The signatures of TV and MB were ambiguous in the case of
pixels located along shore- and coastlines with a certain water
fraction, i.e., mixed pixels. Fig. 7 shows a scatterplot of TV and
MB for pure water (cyan dots), pure land (red dots) and mixed
pixels (black circles) in the case of the study area of Andalusia.
The values of the two parameters for mixed pixels were located
between the clusters of values characteristic of pure water and
pure land. The effect of water fraction on TV and MB is fur-
ther shown in Fig. 8. For a water fraction of 0% (i.e., pure land)
or 100% (i.e., pure water), the ranges of values of the two pa-
rameter were disjoint. For increasing water fraction, the TV in-
creased whereas the MB decreased with an almost linear trend.
For a given water fraction, both parameters presented certain
variability, which could be explained as a consequence of the
type of scatterers within the fraction of land surface inside the
area covered by the pixel. TV was lower when the land part of
the pixel consisted of forest rather than cropland and bare soil;
similarly, the MB was higher. For mixed pixels with a small
fraction of the area corresponding to a single strong scatterer
over land (e.g., from infrastructures), the TV was low and the
MB was high in consequence of the dominance of this strong
and temporally stable scatterer.

Fig. 7. Scatterplots of TV and MB for pure water, pure land and mixed pixels.
Study area: Andalusia. Pixel size: 300 m 300 m. Land cover mask: SWBD.

Fig. 8. TV (top) and MB (bottom) with respect to water fraction for the study
area of the Netherlands. Pixel size: 300 m 300 m. Number of samples: 279.

D. Conditions of the Land Cover

Special land cover conditions that occur for a limited time,
such as wet snow, flooding of a field etc. [45], can have a strong
influence on the backscatter and, consequently, on the multi-
temporal SAR metrics. Herewith, we focus on two conditions
that occurred at several study areas.
In the case of wet snow, the strong absorption of the mi-

crowaves causes very low backscatter, which in turn increases
the temporal variability of the backscatter and produces a very
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Fig. 9. Time series of ASARWSM backscatter for a pixel over barren ground within the study area of Västerbotten. Pixel size: 300 m 300 m Thawing conditions
of snow cover registered on 08 May. 2.7 dB and 20.3 dB.

Fig. 10. Time series of ASARWSM backscatter for a pixel on a glacier within
the study area of Switzerland. 7 dB, MB 20.8 dB. Pixel size:
300 m 300 m.

low MB. A first example is shown in Fig. 9 for a time series of
backscatter measurements over barren ground. The backscatter
dropped on 08-May when weather data reported snow cover
and indicated thawing conditions. The TV and the MB for
the backscatter time series were 2.7 dB and 20.3 dB, thus
falling within the range of values typical of water (see Fig. 4).
Any other measurement of the backscatter was above 16 dB
whereas the TV was 2.5 dB when the observation of 08 May
had been excluded from the time series. The multi-temporal
SAR metrics were therefore in the range of values obtained
for land surfaces. A second example is shown in Fig. 10 for
a time series of backscatter measurements over a glacier. The
backscatter was low during late spring and summer (from
May until September) because of the wet conditions of the
snow cover. The TV and the MB were 7 dB and 20.8 dB.
Disregarding data acquired under wet snow conditions, the TV
and the MB (2.5 dB and 6.0 dB, respectively) were within
the range of values of a land surface.
Depending on the type of crop, the polarization of the

microwave and cultivation practice, there can be substantial
absorption in the vegetation layer, leading to low minimum
backscatter estimates very close to the level observed for water.
This issue could be observed at the study areas of Andalusia, the
Netherlands, Poland, and Central Siberia. During the summer
months, the backscatter of cropland decreased and reached a

Fig. 11. Time series of ASAR WSM backscatter for a pixel over a rice field at
the study area of Andalusia. Pixel size: 300 m 300 m.

minimum and then increased during fall until the level before
summer. For rice fields, temporary flooding caused sudden
decrease of the backscatter, which then increased steadily until
harvest (Fig. 11). The consequence was very low minimum
backscatter and very large temporal variability (above 4 dB).

E. Using Multiple Orbital Tracks

In the case of a multi-temporal dataset including observa-
tions from multiple orbital tracks, the TV and MB are influ-
enced by the different look angles. Discussing look angle de-
pendence of the SAR backscatter for different scattering objects
is beyond the scope of this paper. Here, we focus on a compar-
ison between single- and multi-track TV and MB values to un-
derstand the impact of look angle on the two parameters. This
investigation required that for several tracks, a certain number
of backscatter measurements were available to be able to limit
bias and uncertainties in the track-wise estimation of TV and
MB. Because of the 35-day repeat-pass cycle of Envisat, the
maximum number of observations per track in one year was 11.
A relatively large number of observations (i.e., more than 5)
for several tracks were available only for the Poland study area.
Fig. 12 shows an example of track-wise TV and MB for water
and cropland. Among the land classes in the study area, crop-
land presented the largest variability of backscatter. Despite this
variability, the single-track TV was always smaller than the cor-
responding value of water; similarly, the MB was always higher
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Fig. 12. Single-track TV and MB for two pixels located in areas labeled in the CLC2006 dataset as water and land (cropland), respectively. For each satellite
track, the corresponding incidence angle in degrees at the location of the pixel is displayed next to the metric of the water pixel.

for land than for water. Fig. 12 also shows that TV and MB
were not much affected by the look angle, here expressed in
the form of the local incidence angle to be more precise. The
multi-track TV was equal to 4.4 dB (water) and 1.7 dB (land),
only slightly higher than the single-track values. The MB was
equal to 22.3 dB (water) and 15.1 dB (land), equal to the ab-
solute minimum over all tracks.
In general, TV and MB derived from a multi-track dataset of

observations appeared as slightly enhanced with respect to the
single-track case. Although, the two parameters can be consid-
ered being affected primarily by a temporal component, both
also include a geometric component. Our interpretation applies
to the land cover types in the six study areas. In polar and desert
regions, the backscatter from volumes (snow, ice, or sand layers)
or rugged terrain differs depending on the look angle [46], [47]
thus introducing a more relevant geometric component in the
estimation of TV and MB.

F. Summary

The outcome of the signature analysis is summarized below
and served to set up a water body mapping algorithm based on
multi-temporal SAR parameters.
1. TV and MB are sufficient for separating water and land

surfaces in the case of pure pixels.
2. Water bodies and land surfaces present almost the same

signatures regardless if the SAR datasets consists of multi-angle
or single-track observations.
3. Mixed pixels might be assigned to one or the other class

depending on water fraction and, to a certain extent, on the scat-
tering objects on land.
4. Topographic information in form of slope angle needs to

be accounted for to avoid false detections of land as water.
5. The SAR metrics are ambiguous in the case of a small

number of backscatter measurements.
6. The definition of MB should rely on a low order rank of

the backscatter histogram rather than on the absolute minimum
backscatter to avoid that specific events within the time span of
the backscatter measurements distort the metric.
7. The impact of polarization on the signatures of TV andMB

could not be assessed because the large majority of the ASAR
images were acquired in VV-polarization. The only area cov-
ered by a number of HH-polarized images sufficient to derive

reliable estimates of TV and MB was the Gulf of Bothnia in the
east of the Västerbotten study area. Here, the polarization-spe-
cific TV andMB values did not present any difference also when
compared to the corresponding values obtained disregarding the
polarization. It is, however, necessary to investigate this aspect
taking into account that current and future SAR missions will
acquire multi-temporal observations either in dual- or in full po-
larization.

V. WATER BODY CLASSIFICATION METHODOLOGY

The scatterplots of TV and MB of land and water showed
symmetry of TV and MB for land and water with respect to
a diagonal line represented by a linear equation of increasing
MB for increasing TV. A simple thresholding rule in the fea-
ture space of TV and MB seemed to be sufficient to map water
and land. In this study, we defined the thresholding rule as the
diagonal line that was at equal distance from pre-defined clus-
ters of “pure” land and “pure” water in the case of the study
area of the Netherlands. The training dataset consisted of 10%
of the pixels belonging to each of the two classes according to
the CLC2006 dataset.
Equation (1) corresponds to the diagonal line representing the

threshold in the feature space of TV and MB:

(1)

Here, represents the TV in dB and the MB in dB. This
thresholding rule was found to yield a very good separation be-
tween pure land and pure water for the Netherlands (Fig. 13)
and for all other study areas as well. The observations of TV
and MB of mixed pixels were instead crossed by the diagonal
line. Ultimately, we preferred setting up a simple classification
approach to understand the potential of the TV and MB to sepa-
rate water and land rather than proceeding with a more complex
algorithm already at the beginning of our classification exercise.
The signature analysis furthermore revealed that TV below

1.5 dB and MB above 16 dB are not realistic for water (see
Fig. 4). Combining the three thresholding corresponded to
defining two portions of the feature space associated to water
and land respectively (Fig. 13).
To avoid false detections of land as water in the case of steep

topography, pixels characterized by a slopes steeper than 10
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Fig. 13. Illustration of the water body mapping algorithm. Decision rules are
represented by the black diagonal line and the two dashed lines. The water and
the land regions in the feature space of TV and MB are marked accordingly in
light blue and green, respectively.

have been labeled automatically as land. To avoid false classifi-
cation in the case of a small dataset of backscatter observations,
pixels with less than 10 backscatter measurements have been
discarded. In this study, only the westernmost edge of the An-
dalusia study area could not be classified, corresponding to 5%
of the total number of pixels in the study area.

A. Assessment of Water Body Mapping Accuracy

Verification of the water body maps obtained from the ASAR
data is provided in the form of percentages of agreement with
respect to (i) the CLC2006 product re-coded to water and
non-water, or the SWBD product if the former was not avail-
able, and (ii) the samples extracted from Google Earth imagery.
The wetland classes “marshes”, “peat bogs” and “salines” of
the CLC2006 dataset were re-coded as land. The wetland class
“inter-tidal flats” was re-coded as water in accordance with the
definition of these in the GlobCover dataset. Regardless of the
reference dataset, we use the terms of user’s and producer’s
accuracy (UA and PA), overall accuracy (OA) and Kappa
coefficient as defined in [48] to quantify the agreement between
the SAR-based classification and a reference dataset. The UA
estimates the error related to an inclusion of samples in a given
class (commission error); conversely, the PA estimates the
error related to an exclusion of sample units from a given class
(omission error). The OA and the Kappa coefficient indicate
the overall agreement between the SAR-based classification
and the reference data. The latter statistic is used to detect a
possible agreement by chance between two datasets, which is
embedded in the definition of the OA. To assess the impact of
shorelines on the percentages of agreement with respect to the
raster datasets, both the original and the one-pixel edge-eroded
version were used.

VI. CLASSIFICATION RESULTS AND DISCUSSION

The classification algorithm was applied to the SAR data pro-
cessed at 300 m for each of the study areas. To assess the robust-
ness of the mapping algorithm to seasonal conditions and par-
ticular land-cover characteristics, three different definitions for
MB were tested: (i) the lowest backscatter, (ii) the backscatter

Fig. 14. ASAR-based water body maps using as MB the lowest backscatter
value, the backscatter fifth rank and the backscatter 10th percentile. For refer-
ence, the CLC2006 dataset expressed in terms of a water and a land class is
shown in the bottom panel. Grey is used for land, white is used for water. Study
area: Västerbotten. Pixel size: 300 m 300 m. Note the larger amount of water
bodies detected between 14 and 16 in the top panel with respect to the
other panels.

fifth rank, and (iii) the backscatter 10th percentile. While using
the rank as MB is more adequate for large backscatter datasets,
the percentile is better suited when the multi-temporal dataset
is small. The choice of definitions for the MB is not exhaustive;
however, it was not the scope of this analysis to investigate the
optimal selection of the MB channel. With (ii) and (iii), the aim
was to demonstrate possible approaches to avoid that measure-
ment noise and sporadic events would affect the MB value to
cause false detections.
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TABLE III
USER’S AND PRODUCER’S ACCURACY (UA AND PA), OVERALL ACCURACY (OA) AND KAPPA COEFFICIENT WITH RESPECT TO THE CLC2006 DATASET RECODED
TO WATER AND LAND CLASSES OR THE SWBD PRODUCT, DEPENDING ON AVAILABILITY. THE SHADED ROWS REFER TO FIGURES RELATIVE TO THE ONE-PIXEL
EDGE-ERODED VERSION OF EACH PRODUCT. ACCURACIES ARE REPORTED FOR THE MAP OBTAINED USING AS MB (I) THE LOWEST BACKSCATTER, (II) THE
BACKSCATTER FIFTH RANK AND (III) THE BACKSCATTER 10TH PERCENTILE. PIXEL SIZE: 300 m 300 m. ACCURACIES ARE IN THE FORM OF % VALUES

A comparison of water body maps with respect to the refer-
ence dataset (CLC2006 re-coded to water and land) is shown in
Fig. 14 for the study area of Västerbotten. Major water bodies
and the Baltic Sea were mapped correctly regardless of the defi-
nition of MB. The MB set equal to the lowest backscatter value
(Fig. 14, top panel) caused false detections of land surfaces as
water in correspondence of the western edge of the study area
between 14 and 16 . Here, wet snow conditions caused
high TV and low MB when all measurements were considered
(see also Fig. 2). Using a low-order parameter of the backscatter
histogram rather than the absolute minimum implied that such
special conditions were disregarded and the corresponding
water body map (Fig. 14, central panels) presented stronger
agreement with the reference (Fig. 14, bottom panel).
Table III reports agreement statistics for each of the six study

areas when using the raster datasets (CLC2006 or SWBD) as
reference. For study areas where both datasets were available,
we note that the difference between accuracies using one or the
other dataset was less than a few percent units. Table IV reports
the agreement numbers in the case of the Google Earth samples
with pure land and pure water information.
Mapping of water bodies performed better when using as

MB a low-order parameter of the backscatter histogram (cf. UA
of rows (ii) and (iii) with respect to the corresponding UAs

on row (i) in Table III). The commission error for the water
class decreased because false detection of land as water could
be avoided by neglecting data acquired under special environ-
mental conditions that could distort the MB (Table III). The
agreement statistics for the UA of the water class however did
not give a clear indication on which of the two definitions here
chosen for the MB metric (5th rank or 10th percentile) should
ultimately be preferred (Tables III and IV). For classification
based on a histogram parameter, the UA was above 92% for all
study areas (rows (ii) and (iii) in Tables III and IV) except for
Andalusia. The lower agreement was a consequence of a large
portion of salines (wetlands) being detected as water. Because
of the fragmentation of salines, the UA in the case of pure pixels
was higher than when all pixels were considered (90% vs. 80%).
Herewith, we note that wetlands in the form of marshes and peat
bogs were detected as land in at least 95% of the cases. Inter-
tidal flats were detected as water in more than 99% of the cases.
Mixed pixels, i.e., pixels along shorelines, were often labeled

as land while they were defined as water in the reference dataset.
Omissions of water areas were more frequent in study areas
characterized by narrow water bodies (Andalusia, Poland, and
Västerbotten). The PA of water was mostly in the 30% to 50%
range (Table III). When shoreline pixels were excluded from
the analysis, the PA of water was mostly above the 90% level
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TABLE IV
USER’S AND PRODUCER’S ACCURACY (UA AND PA), OVERALL ACCURACY (OA) AND KAPPA COEFFICIENT WITH RESPECT TO GOOGLE EARTH SAMPLES

( number of samples). THE VALIDATION DATASET CONSISTED OF POLYGONS WITH WATER FRACTION OF 100% (WATER CLASS) AND (LAND CLASS).
ACCURACIES ARE REPORTED FOR THE MAP OBTAINED USING AS MB (I) THE LOWEST BACKSCATTER, (II) THE BACKSCATTER FIFTH RANK AND (III) THE

BACKSCATTER 10TH PERCENTILE. PIXEL SIZE: 300 m 300 m. ACCURACIES ARE IN THE FORM OF % VALUES.

except for Andalusia where PA was between 71% and 81% de-
pending on the definition of MB. The poorer performance of
the mapping algorithm in Andalusia was related to the irregular
shoreline of several water reservoirs which appeared smaller
compared to the reference dataset. This indication is supported
by the higher PA based on Google Earth samples (above 85%,
Table IV), where the proportion of samples in correspondence
of a shoreline was smaller compared to the CLC2006 dataset.
The overall classification accuracy was above 90% for all

study areas (Tables III and IV). The Kappa coefficient instead
depended on the definition used for MB and whether shoreline
pixels had been excluded from the reference dataset (Table III).
This in turn implied that size and shape of water bodies affected
the Kappa coefficient. The lowest coefficients were obtained in
Andalusia (45% and 80%, average of the three MB cases). For
Poland and Västerbotten, the Kappa coefficient was of the order
of 60%when shorelines were taken into account whereas for the
remaining study areas the coefficient was approximately 80%
(average of the three MB cases). When restricting to pure pixels
only, the Kappa coefficient was above 90%.
To further quantify the impact of water fraction in a pixel on

the accuracy of the water body maps, we illustrate in Fig. 15 the
agreement statistics with respect to a threshold on water frac-
tion in the case of the Netherlands study area. The PA of the
water class and thus the UA of land improved for increasing
minimum water fraction within a pixel because the omission of
water areas was stronger in mixed pixels with larger fraction of
land. Commission errors of water areas were very seldom (UA
of water almost 100%) because in the case of mixed pixels, the
multi-temporal metrics were found to be affected primarily by
the properties of the radar backscatter from the land fraction
within the pixel (see Section IV-C).
The OAs for the six study areas presented similar trends,

indicating increased agreement between ASAR-based water
body maps and reference datasets for threshold on water frac-
tion (Fig. 16). Defining as water a pixel with at least 75% water
fraction implied an overall mapping accuracy of approximately

Fig. 15. UAs, PAs and OA with respect to a threshold for water fraction for the
study area of the Netherlands. Pixel size: 300 m 300 m.

90%. A threshold of 50% was instead characterized by OAs
between 75% and 85%. The differences of OA for a given
threshold were related to the amount of water pixels omitted
by the classification algorithm. Lower OAs were obtained for
study areas with small water bodies and irregular shorelines.
The classification algorithm applied to SAR data with the

pixel size of 150 m mapped features with a size on the order of
300 m which were omitted in the classification using the SAR
data with the alike pixel size. As an example, in correspondence
of the Rhine river delta in the study area of the Netherlands, the
percentage of pixels labeled as water increased from 14.7% to
15.4%. To assess the impact of pixel size on the classification,
we compared the agreement statistics between the ASAR-based
water body maps and the reference datasets at 150 m and 300 m
in Table V. When restricting to pure pixels of water and land
(CLC2006 dataset), all agreement statistics were above 95% and
the Kappa coefficient was above 0.97. Lower PA of water and in
turn lower OA (approximately 88%) occurred when shoreline
pixels were included in the reference dataset. Benchmarking
against the Google Earth dataset indicated more omissions of
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TABLE V
USER’S AND PRODUCER’S ACCURACY (UA AND PA), OVERALL ACCURACY (OA) AND KAPPA COEFFICIENT FOR THE 150 M PIXEL SIZE WITH RESPECT TO
THE 300 M PIXEL SIZE (SHADED CELLS) FOR DIFFERENT REFERENCE DATASETS. THE MB CORRESPONDED TO THE BACKSCATTER FIFTH RANK. ACCURACIES

ARE IN THE FORM OF % VALUES.

Fig. 16. OA for each study area with respect to the threshold for water fraction.
Pixel size: 300 m 300 m.

water areas for the pixel size of 150 m than 300 m. At 300 m,
several narrow-sized water bodies neither appeared in the refer-
ence dataset nor were detected in the ASAR data. Conversely,
at 150 m they were still not detected in the ASAR data but ap-
peared in the reference dataset although they were mostly char-
acterized by a certain land fraction which in turn caused the
omissions.

VII. CONCLUSIONS AND OUTLOOK

In this study, we looked at the potential of SAR multi-tem-
poral metrics for land cover characterization with particular
regard to discriminate between open water bodies and land
surfaces. The SAR dataset consisted of C-band Envisat ASAR
Wide Swath Mode images because of the large amount of
data available worldwide, easy access and the moderate spatial
resolution. Although data from other spaceborne SAR sensors
might be more suitable for such application (e.g., L-band, dual-
and full polarimetric data, shallow look angles, meter resolu-
tion), none satisfies the requirements of easy access, frequent
and large-area coverage.
A simple thresholding algorithm based on the temporal

variability (TV) of the SAR backscatter and the minimum
backscatter (MB) estimated from stacks including at least 10
measurements could discriminate between permanent water
bodies and land surfaces at 150 and 300 m pixel size in a
consistent manner. Defining the MB as low order ranks or
percentiles rather than the lowest backscatter served to avoid
commission errors for the water class. The overall classification
accuracy was above 90% when restricting to pure pixels; the
accuracy decreased linearly with water fraction when also

mixed pixels were taken into account. For a threshold of 50%
of water fraction, the overall accuracy was approximately 80%.
Omissions of water areas occurred in correspondence of

mixed pixels with a water fraction and for narrow water bodies
with irregular shorelines. Water bodies with a dimension less
than twice the pixel size of the SAR data were not detected.
High resolution images such as those provided by the forth-
coming Sentinel-1 mission might reduce the area affected by
omissions of water, particularly in the case of small-sized water
bodies; it is however expected that mixed water/land pixels
along shorelines are classified mostly as land since because
the TV and MB are affected by the scattering properties of the
objects within the resolution cell rather than by the resolution
of the sensor itself.
While this study focused on mapping permanent water

bodies, the approach presented here is in theory applicable also
to monitor the dynamics of water bodies by using SAR data
from selected time windows. Assessing the detection of water
surfaces in consequence of temporary events like inundation
and flooding would require dense time series of measurements
in correspondence of the specific event. The availability of
daily observations of ASAR Wide Swath Mode observations
at latitudes north 60 could be used to demonstrate the capa-
bility of time series of short-term TV and MB to track water
dynamics in tundra regions.
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